34 research outputs found

    Estudio de la actividad catalítica y transferencia de electrones de CYP2B4 inmovilizada en MCM-41 con cobre y aluminio

    No full text
    Tesis (Doctorado en Investigación en Medicina), Instituto Politécnico Nacional, SEPI, ESM, 2007, 1 archivo PDF, (93 páginas). tesis.ipn.m

    Implication of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase and Its Inhibitors in Alzheimer’s Disease Murine Models

    No full text
    Alzheimer’s disease (AD) is one of the main human dementias around the world which is constantly increasing every year due to several factors (age, genetics, environment, etc.) and there are no prevention or treatment options to cure it. AD is characterized by memory loss associated with oxidative stress (OS) in brain cells (neurons, astrocytes, microglia, etc.). OS can be produced by amyloid beta (Aβ) protein aggregation and its interaction with metals, mitochondrial damage and alterations between antioxidants and oxidant enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. NADPH oxidase produces reactive oxygen species (ROS) and it is overexpressed in AD, producing large amounts of superoxide anions and hydrogen peroxide which damage brain cells and the vasculature. In addition, it has been reported that NADPH oxidase causes an imbalance of pH which could also influence in the amyloid beta (Aβ) production. Therefore, NADPH oxidase had been proposed as a therapeutic target in AD. However, there are no drugs for AD treatment such as an NADPH oxidase inhibitor despite great efforts made to stabilize the ROS production using antioxidant molecules. So, in this work, we will focus our attention on NADPH oxidase (NOX2 and NOX4) in AD as well as in AD models and later discuss the use of NADPH oxidase inhibitor compounds in AD

    Synthesis and Biological Importance of 2-(thio)ureabenzothiazoles

    No full text
    The (thio)urea and benzothiazole (BT) derivatives have been shown to have a broad spectrum of biological activities. These groups, when bonded, result in the 2-(thio)ureabenzothizoles (TBT and UBT), which could favor the physicochemical and biological properties. UBTs and TBTs are compounds of great importance in medicinal chemistry. For instance, Frentizole is a UBT derivative used for the treatment of rheumatoid arthritis and systemic lupus erythematosus. The UBTs Bentaluron and Bethabenthiazuron are commercial fungicides used as wood preservatives and herbicides in winter corn crops. On these bases, we prepared this bibliography review, which covers chemical aspects of UBTs and TBTs as potential therapeutic agents as well as their studies on the mechanisms of a variety of pharmacological activities. This work covers synthetic methodologies from 1935 to nowadays, highlighting the most recent approaches to afford UBTs and TBTs with a variety of substituents as illustrated in 42 schemes and 13 figures and concluded with 187 references. In addition, this interesting review is designed on chemical reactions of 2-aminobenzothiazoles (2ABTs) with (thio)phosgenes, iso(thio)cyanates, 1,1′-(thio)carbonyldiimidazoles [(T)CDI]s, (thio)carbamoyl chlorides, and carbon disulfide. This topic will provide information of utility for medicinal chemists dedicated to the design and synthesis of this class of compounds to be tested with respect to their biological activities and be proposed as new pharmacophores

    Hydroxamic acid derivatives as HDAC1, HDAC6 and HDAC8 inhibitors with antiproliferative activity in cancer cell lines.

    No full text
    Histone deacetylases (HDACs) belong to a family of enzymes that remove acetyl groups from the ɛ-amino of histone and nonhistone proteins. Additionally, HDACs participate in the genesis and development of cancer diseases as promising therapeutic targets to treat cancer. Therefore, in this work, we designed and evaluated a set of hydroxamic acid derivatives that contain a hydrophobic moiety as antiproliferative HDAC inhibitors. For the chemical structure design, in silico tools (molecular docking, molecular dynamic (MD) simulations, ADME/Tox properties were used to target Zn2+ atoms and HDAC hydrophobic cavities. The most promising compounds were assayed in different cancer cell lines, including hepatocellular carcinoma (HepG2), pancreatic cancer (MIA PaCa-2), breast cancer (MCF-7 and HCC1954), renal cancer (RCC4-VHL and RCC4-VA) and neuroblastoma (SH-SY5Y). Molecular docking and MD simulations coupled to the MMGBSA approach showed that the target compounds have affinity for HDAC1, HDAC6 and HDAC8. Of all the compounds evaluated, YSL-109 showed the best activity against hepatocellular carcinoma (HepG2 cell line, IC50 = 3.39 µM), breast cancer (MCF-7 cell line, IC50 = 3.41 µM; HCC1954 cell line, IC50 = 3.41 µM) and neuroblastoma (SH-SY5Y cell line, IC50 = 6.42 µM). In vitro inhibition assays of compound YSL-109 against the HDACs showed IC50 values of 259.439 µM for HDAC1, 0.537 nM for HDAC6 and 2.24 µM for HDAC8

    Recent Advances by In Silico and In Vitro Studies of Amyloid-β 1-42 Fibril Depicted a S-Shape Conformation

    No full text
    The amyloid-β 1-42 (Aβ1-42) peptide is produced by proteolytic cleavage of the amyloid precursor protein (APP) by sequential reactions that are catalyzed by γ and β secretases. Aβ1-42, together with the Tau protein are two principal hallmarks of Alzheimer’s disease (AD) that are related to disease genesis and progression. Aβ1-42 possesses a higher aggregation propensity, and it is able to form fibrils via nucleated fibril formation. To date, there are compounds available that prevent Aβ1-42 aggregation, but none have been successful in clinical trials, possibly because the Aβ1-42 structure and aggregation mechanisms are not thoroughly understood. New molecules have been designed, employing knowledge of the Aβ1-42 structure and are based on preventing or breaking the ionic interactions that have been proposed for formation of the Aβ1-42 fibril U-shaped structure. Recently, a new Aβ1-42 fibril S-shaped structure was reported that, together with its aggregation and catalytic properties, could be helpful in the design of new inhibitor molecules. Therefore, in silico and in vitro methods have been employed to analyze the Aβ1-42 fibril S-shaped structure and its aggregation to obtain more accurate Aβ1-42 oligomerization data for the design and evaluation of new molecules that can prevent the fibrillation process

    Untargeted LC-MS/MS Metabolomics Study on the MCF-7 Cell Line in the Presence of Valproic Acid

    No full text
    To target breast cancer (BC), epigenetic modulation could be a promising therapy strategy due to its role in the genesis, growth, and metastases of BC. Valproic acid (VPA) is a well-known histone deacetylase inhibitor (HDACi), which due to its epigenetic focus needs to be studied in depth to understand the effects it might elicit in BC cells. The aim of this work is to contribute to exploring the complete pharmacological mechanism of VPA in killing cancer cells using MCF-7. LC-MS/MS metabolomics studies were applied to MCF-7 treated with VPA. The results show that VPA promote cell death by altering metabolic pathways principally pentose phosphate pathway (PPP) and 2′deoxy-α-D-ribose-1-phosphate degradation related with metabolites that decrease cell proliferation and cell growth, interfere with energy sources and enhance reactive oxygen species (ROS) levels. We even suggest that mechanisms such as ferropoptosis could be involved due to deregulation of L-cysteine. These results suggest that VPA has different pharmacological mechanisms in killing cancer cells including apoptotic and nonapoptotic mechanisms, and due to the broad impact that HDACis have in cells, metabolomic approaches are a great source of information to generate new insights for this type of molecule

    Preclinical Pharmacokinetics and Acute Toxicity in Rats of 5-{[(2E)-3-Bromo-3-carboxyprop-2-enoyl]amino}-2-hydroxybenzoic Acid: A Novel 5-Aminosalicylic Acid Derivative with Potent Anti-Inflammatory Activity

    No full text
    Compound 5-{[(2E)-3-bromo-3-carboxyprop-2-enoyl]amino}-2-hydroxybenzoic acid (C1), a new 5-aminosalicylic acid (5-ASA) derivative, has proven to be an antioxidant in vitro and an anti-inflammatory agent in mice. The in vivo inhibition of myeloperoxidase was comparable to that of indomethacin. The aim of this study was to take another step in the preclinical evaluation of C1 by examining acute toxicity with the up-and-down OECD method and pharmacokinetic profiles by administration of the compound to Wistar rats through intravenous (i.v.), oral (p.o.), and intraperitoneal (i.p.) routes. According to the Globally Harmonized System, C1 belongs to categories 4 and 5 for the i.p. and p.o. routes, respectively. An RP-HPLC method for C1 quantification in plasma was successfully validated. Regarding the pharmacokinetic profile, the elimination half-life was approximately 0.9 h with a clearance of 24 mL/min after i.v. administration of C1 (50 mg/kg). After p.o. administration (50 mg/kg), the maximum plasma concentration was reached at 33 min, the oral bioavailability was about 77%, and the compound was amply distributed to all tissues evaluated. Therefore, C1 administered p.o. in rats is suitable for reaching the colon where it can exert its effect, suggesting an important advantage over 5-ASA and indomethacin in treating ulcerative colitis and Crohn’s disease

    Tert-butyl-(4-hydroxy-3-((3-(2-methylpiperidin-yl)propyl)carbamoyl)phenyl)carbamate Has Moderated Protective Activity in Astrocytes Stimulated with Amyloid Beta 1-42 and in a Scopolamine Model

    No full text
    Alzheimer’s disease (AD) is a neurodegenerative disease with no cure nowadays; there is no treatment either to prevent or to stop its progression. In vitro studies suggested that tert-butyl-(4-hydroxy-3-((3-(2-methylpiperidin-yl)propyl)carbamoyl)phenyl) carbamate named the M4 compound can act as both β-secretase and an acetylcholinesterase inhibitor, preventing the amyloid beta peptide (Aβ) aggregation and the formation of fibrils (fAβ) from Aβ1-42. This work first aimed to assess in in vitro studies to see whether the death of astrocyte cells promoted by Aβ1-42 could be prevented. Second, our work investigated the ability of the M4 compound to inhibit amyloidogenesis using an in vivo model after scopolamine administration. The results showed that M4 possesses a moderate protective effect in astrocytes against Aβ1-42 due to a reduction in the TNF-α and free radicals observed in cell cultures. In the in vivo studies, however, no significant effect of M4 was observed in comparison with a galantamine model employed in rats, in which case this outcome was attributed to the bioavailability of M4 in the brain of the rats

    Cucurbitacin I elicits the formation of actin/phospho-myosin II co-aggregates by stimulation of the RhoA/ROCK pathway and inhibition of LIM-kinase

    No full text
    International audienceCucurbitacins are cytotoxic triterpenoid sterols isolated from plants. One of their earliest cellular effect is the aggregation of actin associated with blockage of cell migration and division that eventually lead to apoptosis. We unravel here that cucurbitacin I actually induces the co-aggregation of actin with phospho-myosin II. This co-aggregation most probably results from the stimulation of the Rho/ROCK pathway and the direct inhibition of the LIMKinase. We further provide data that suggest that the formation of these co-aggregates is independent of a putative pro-oxidant status of cucurbitacin I. The results help to understand the impact of cucurbitacins on signal transduction and actin dynamics and open novel perspectives to use it as drug candidates for cancer research
    corecore