78 research outputs found

    The impact of applying effort to reduce activity variability on the project time and cost performance

    Get PDF
    During project execution, deviations from the baseline schedule are inevitable due to the presence of uncertainty and variability. To assure successful project completion, the project’s progress should be monitored and corrective actions should be taken to get the project back on track. This paper presents an integrated project control procedure for measuring the project’s progress and taking corrective actions when necessary. We apply corrective actions that reduce the activity variability to improve the project outcome. Therefore, we quantify the relation between the applied managerial effort and the reduction in activity variability. Moreover, we define three distinct control strategies to take corrective actions on activities, i.e. an interventive strategy, a preventive strategy and a hybrid strategy. A computational experiment is conducted to evaluate the performance of these strategies. The results of this experiment show that different strategies are preferred depending on the topological network structure of projects. More specifically, the interventive strategy and hybrid strategy are preferred for parallel projects, while the preventive strategy is preferred for serial projects

    Mobile phones: a trade-off between speech intelligibility and exposure to noise levels and to radio-frequency electromagnetic fields

    Get PDF
    When making phone calls, cellphone and smartphone users are exposed to radio-frequency (RF) electromagnetic fields (EMFs) and sound pressure simultaneously. Speech intelligibility during mobile phone calls is related to the sound pressure level of speech relative to potential background sounds and also to the RF-EMF exposure, since the signal quality is correlated with the RF-EMF strength. Additionally, speech intelligibility, sound pressure level, and exposure to RF-EMFs are dependent on how the call is made (on speaker, held at the ear, or with headsets). The relationship between speech intelligibility, sound exposure, and exposure to RF-EMFs is determined in this study. To this aim, the transmitted RF-EMF power was recorded during phone calls made by 53 subjects in three different, controlled exposure scenarios: calling with the phone at the ear, calling in speaker mode, and calling with a headset. This emitted power is directly proportional to the exposure to RF EMFs and is translated into specific absorption rate using numerical simulations. Simultaneously, sound pressure levels have been recorded and speech intelligibility has been assessed during each phone call. The results show that exposure to RF-EMFs, quantified as the specific absorption in the head, will be reduced when speaker-mode or a headset is used, in comparison to calling next to the ear. Additionally, personal exposure to sound pressure is also found to be highest in the condition where the phone is held next to the ear. On the other hand, speech perception is found to be the best when calling with a phone next to the ear in comparison to the other studied conditions, when background noise is present

    Low MRSA prevalence in horses at farm level

    Get PDF
    Background: In Europe, methicillin-resistant Staphylococcus aureus (MRSA) belonging to the clonal complex (CC) 398 has become an important pathogen in horses, circulating in equine clinics and causing both colonization and infection. Whether equine MRSA is bound to hospitals or can also circulate in the general horse population is currently unknown. This study, therefore, reports the nasal and perianal MRSA screening of 189 horses on 10 farms in a suspected high prevalence region (East-and West-Flanders, Belgium). Results: Only one horse (0.53%) from one farm (10%) tested positive in the nose. It carried a spa type t011-SCCmecV isolate, resistant to beta-lactams and tetracycline, which is typical for livestock-associated MRSA CC398. Conclusion: In the region tested here, horses on horse farms seem unlikely to substantially contribute to the large animal associated ST398 MRSA reservoir present at intensive animal production units

    Multifunctional sequence-defined macromolecules for chemical data storage

    Get PDF
    Sequence-defined macromolecules consist of a defined chain length (single mass), end-groups, composition and topology and prove promising in application fields such as anti-counterfeiting, biological mimicking and data storage. Here we show the potential use of multifunctional sequence-defined macromolecules as a storage medium. As a proof-of-principle, we describe how short text fragments (human-readable data) and QR codes (machine-readable data) are encoded as a collection of oligomers and how the original data can be reconstructed. The amide-urethane containing oligomers are generated using an automated protecting-group free, two-step iterative protocol based on thiolactone chemistry. Tandem mass spectrometry techniques have been explored to provide detailed analysis of the oligomer sequences. We have developed the generic software tools Chemcoder for encoding/decoding binary data as a collection of multifunctional macromolecules and Chemreader for reconstructing oligomer sequences from mass spectra to automate the process of chemical writing and reading

    On the use of on-cow accelerometers for the classification of behaviours in dairy barns

    Get PDF
    Analysing behaviours can provide insight into the health and overall well-being of dairy cows. Automatic monitoring systems using e.g., accelerometers are becoming increasingly important to accurately quantify cows' behaviours as the herd size increases. The aim of this study is to automatically classify cows' behaviours by comparing leg- and neck-mounted accelerometers, and to study the effect of the sampling rate and the number of accelerometer axes logged on the classification performances. Lying, standing, and feeding behaviours of 16 different lactating dairy cows were logged for 6 h with 3D-accelerometers. The behaviours were simultaneously recorded using visual observation and video recordings as a reference. Different features were extracted from the raw data and machine learning algorithms were used for the classification. The classification models using combined data of the neck- and the leg-mounted accelerometers have classified the three behaviours with high precision (80-99%) and sensitivity (87-99%). For the leg-mounted accelerometer, lying behaviour was classified with high precision (99%) and sensitivity (98%). Feeding was classified more accurately by the neck-mounted versus the leg-mounted accelerometer (precision 92% versus 80%; sensitivity 97% versus 88%). Standing was the most difficult behaviour to classify when only one accelerometer was used. In addition, the classification performances were not highly influenced when only X, X and Z, or Z and Y axes were used for the classification instead of three axes, especially for the neck-mounted accelerometer. Moreover, the accuracy of the models decreased with about 20% when the sampling rate was decreased from 1 Hz to 0.05 Hz

    Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct <i>in vitro</i>

    Get PDF
    In the present study, we evaluated the differentiation potential of human dental pulp stem cells (hDPSCs) toward Schwann cells, together with their functional capacity with regard to myelination and support of neurite outgrowth in vitro. Successful Schwann cell differentiation was confirmed at the morphological and ultrastructural level by transmission electron microscopy. Furthermore, compared to undifferentiated hDPSCs, immunocytochemistry and ELISA tests revealed increased glial marker expression and neurotrophic factor secretion of differentiated hDPSCs (d-hDPSCs), which promoted survival and neurite outgrowth in 2-dimensional dorsal root ganglia cultures. In addition, neurites were myelinated by d-hDPSCs in a 3-dimensional collagen type I hydrogel neural tissue construct. This engineered construct contained aligned columns of d-hDPSCs that supported and guided neurite outgrowth. Taken together, these findings provide the first evidence that hDPSCs are able to undergo Schwann cell differentiation and support neural outgrowth in vitro, proposing them to be good candidates for cell-based therapies as treatment for peripheral nerve injury

    Behaviours classification using leg-mounted accelerometers in dairy barns

    Get PDF
    corecore