3 research outputs found

    Differences in atmospheric phosphorus deposition amongst rural and urban land use locations in Missouri

    Get PDF
    Atmospheric phosphorus (AP) produced by both anthropogenic and natural processes influences phytoplankton productivity and alters carbon processing in water bodies, resulting in potential impairment and toxic phytoplankton blooms. The production of AP, which is oftentimes transported vast distances by wind dispersal in the form of enriched mineral dust, can be re-deposited by wet (precipitation based) or dry (continual) deposition. Both rural and urban locations in Missouri experience varying anthropogenic activities; therefore, distinguishing between varying land use locations at these sites provides insight as to why AP may differ. The objective of this study is to determine if AP deposition differs among rural and urban land use locations in Missouri. When soil has been recently agitated and readily exposed, we hypothesize this additional P in the atmosphere will result in higher bulk deposition flux totals (BD) in rural locations. AP was collected from three rural locations and three urban locations, using a standard sized utility bucket, altered to reduce debris. After each two-week sampling period, a total sample water volume for each site is collected, total P is analyzed (TP), which determines the BD flux of each site by factoring the time it took to collect each sample (4 samples over approximately 70 days). Rural locations had the highest BD. Rural locations were not significantly different than urban locations (F5,18 = 1.667, p = 0.194). Further analysis of AP and the implication on water bodies is needed, as AP analysis is exceedingly rare. A multitude of differing land use practices results in variables that contribute significantly to the production of AP.Crystal Rein, Sarahi Viscarra Arellano, Karl Friesen-Hughes, Ashley King, Alexia Marten, Corey Sanderson, Jason J Venkiteswaran, Helen Baulch, Nora Jessie Casson, Colin J Whitfield, and Rebecca North (University of Missouri, University of Saskatchewan, Wilfrid Laurier University, University of Winnipeg

    Interobserver agreement for the ATS/ERS/JRS/ALAT criteria for a UIP pattern on CT.

    Full text link
    OBJECTIVES: To establish the level of observer variation for the current ATS/ERS/JRS/ALAT criteria for a diagnosis of usual interstitial pneumonia (UIP) on CT among a large group of thoracic radiologists of varying levels of experience. MATERIALS AND METHODS: 112 observers (96 of whom were thoracic radiologists) categorised CTs of 150 consecutive patients with fibrotic lung disease using the ATS/ERS/JRS/ALAT CT criteria for a UIP pattern (3 categories--UIP, possibly UIP and inconsistent with UIP). The presence of honeycombing, traction bronchiectasis and emphysema was also scored using a 3-point scale (definitely present, possibly present, absent). Observer agreement for the UIP categorisation and for the 3 CT patterns in the entAUe observer group and in subgroups stratified by observer experience, were evaluated. RESULTS: Interobserver agreement across the diagnosis category scores among the 112 observers was moderate, ranging from 0.48 (IQR 0.18) for general radiologists to 0.52 (IQR 0.20) for thoracic radiologists of 10-20 years' experience. A binary score for UIP versus possible or inconsistent with UIP was examined. Observer agreement for this binary score was only moderate. No significant differences in agreement levels were identified when the CTs were stratified according to multidisciplinary team (MDT) diagnosis or patient age or when observers were categorised according to experience. Observer agreement for each of honeycombing, traction bronchiectasis and emphysema were 0.59+/-0.12, 0.42+/-0.15 and 0.43+/-0.18, respectively. CONCLUSIONS: Interobserver agreement for the current ATS/ERS/JRS/ALAT CT criteria for UIP is only moderate among thoracic radiologists, AUrespective of theAU experience, and did not vary with patient age or the MDT diagnosis

    A roadmap to generate renewable protein binders to the human proteome

    No full text
    Despite the wealth of commercially available antibodies to human proteins, research is often hindered by their inconsistent validation, their poor performance and the inadequate coverage of the proteome. These issues could be addressed by systematic, genome-wide efforts to generate and validate renewable protein binders. We report a multicenter study to assess the potential of hybridoma and phage-display technologies in a coordinated large-scale antibody generation and validation effort. We produced over 1,000 antibodies targeting 20 SH2 domain proteins and evaluated them for potency and specificity by enzyme-linked immunosorbent assay (ELISA), protein microarray and surface plasmon resonance (SPR). We also tested selected antibodies in immunoprecipitation, immunoblotting and immunofluorescence assays. Our results show that high-affinity, high-specificity renewable antibodies generated by different technologies can be produced quickly and efficiently. We believe that this work serves as a foundation and template for future larger-scale studies to create renewable protein binders
    corecore