6 research outputs found

    Covalently Bound Azido Groups Are Very Specific Water Sensors, Even in Hydrogen-Bonding Environments

    No full text
    Our first paper (a full paper) on the sensitivity of the azido function group to its local environment, using model compounds. --author-supplied descriptio

    Covalently Bound Azido Groups Are Very Specific Water Sensors, Even in Hydrogen-Bonding Environments

    No full text
    Covalently bound azido groups are found in many commercially available biomolecular precursors and substrates, and the NNN asymmetric stretching band of these groups is a strong infrared absorber that appears in a spectral region clear of other signals. In order to evaluate comprehensively the solvatochromism of the asymmetric azido NNN stretching band for site-specific use in biomolecular contexts, infrared spectra of the model compounds 5-azido,1-pentanoic acid and 3-(<i>p</i>-azidophenyl),1-propanoic acid were acquired in a large variety of nonpolar, polar, and hydrogen-bond-donating solvents, as well as mixed aqueous-organic solvents. Spectra in pure solvents indicated that the aliphatic NNN stretching frequency maximum does not depend on solvent polarity, while the aromatic NNN frequency displays a weak but nonzero sensitivity to polarity. In both cases, the NNN frequency exhibits a blue-shift in H-bond-donating solvents, but the frequency in water is higher than in any other H-bond-donating solvent including solvents that are stronger H-bond donors. In nonfluorinated H-bond donor solvents, the frequency blue shift scales with the density of H-bond donors. This sensitivity to the presence of water was further explored in several mixed solvent environments, with the conclusion that this vibrational mode is a highly specific sensor of hydration, even in environments containing other H-bond donors like amides and alcohols, due to the very high local density of H-bond donors in water. The relatively uncomplicated (compared to nitriles, for example), water-specific response of this vibrational mode should lead to its adoption as a site-specific probe of hydration in many different possible systems in which the presence and role of molecular water is of primary interest
    corecore