41 research outputs found

    Role of CD8+ cells in controlling replication of nonpathogenic Simian Immunodeficiency Virus SIVmac1A11

    Get PDF
    Infection of macaques with the avirulent molecular clone SIVmac1A11 results in transient low viremia and no disease. To investigate if this low viremia is solely due to intrinsic poor replication fitness or is mediated by efficient immune-mediated control, 5 macaques were inoculated intravenously with SIVmac1A11. Three animals that were depleted of CD8+ cells at the start of infection had more prolonged viremia with peak virus levels 1 to 2 logs higher than those of 2 animals that received a non-depleting control antibody. Thus, CD8+ cell-mediated immune responses play an important role in controlling SIVmac1A11 replication during acute viremia

    Simian immunodeficiency virus (SIV) envelope quasispecies transmission and evolution in infant rhesus macaques after oral challenge with uncloned SIVmac251: increased diversity is associated with neutralizing antibodies and improved survival in previously immunized animals

    Get PDF
    BACKGROUND: Oral infection of infant macaques with simian immunodeficiency virus (SIV) is a useful animal model to test interventions to reduce postnatal HIV transmission via breast-feeding. We previously demonstrated that immunization of infant rhesus macaques with either modified vaccinia virus Ankara (MVA) expressing SIV Gag, Pol and Env, or live-attenuated SIVmac1A11 resulted in lower viremia and longer survival compared to unimmunized controls after oral challenge with virulent SIVmac251 (Van Rompay et al., J. Virology 77:179–190, 2003). Here we evaluate the impact of these vaccines on oral transmission and evolution of SIV envelope variants. RESULTS: Limiting dilution analysis of SIV RNA followed by heteroduplex mobility assays of the V1–V2 envelope (env) region revealed two major env variants in the uncloned SIVmac251 inoculum. Plasma sampled from all infants 1 week after challenge contained heterogeneous SIV env populations including one or both of the most common env variants in the virus inoculum; no consistent differences in patterns of env variants were found between vaccinated and unvaccinated infants. However, SIV env variant populations diverged in most vaccinated monkeys 3 to 5 months after challenge, in association with the development of neutralizing antibodies. CONCLUSIONS: These patterns of viral envelope diversity, immune responses and disease course in SIV-infected infant macaques are similar to observations in HIV-infected children, and underscore the relevance of this pediatric animal model. The results also support the concept that neonatal immunization with HIV vaccines might modulate disease progression in infants infected with HIV by breast-feeding

    Sequential emergence and clinical implications of viral mutants with K70E and K65R mutation in reverse transcriptase during prolonged tenofovir monotherapy in rhesus macaques with chronic RT-SHIV infection.

    Get PDF
    BackgroundWe reported previously on the emergence and clinical implications of simian immunodeficiency virus (SIVmac251) mutants with a K65R mutation in reverse transcriptase (RT), and the role of CD8+ cell-mediated immune responses in suppressing viremia during tenofovir therapy. Because of significant sequence differences between SIV and HIV-1 RT that affect drug susceptibilities and mutational patterns, it is unclear to what extent findings with SIV can be extrapolated to HIV-1 RT. Accordingly, to model HIV-1 RT responses, 12 macaques were inoculated with RT-SHIV, a chimeric SIV containing HIV-1 RT, and started on prolonged tenofovir therapy 5 months later.ResultsThe early virologic response to tenofovir correlated with baseline viral RNA levels and expression of the MHC class I allele Mamu-A*01. For all animals, sensitive real-time PCR assays detected the transient emergence of K70E RT mutants within 4 weeks of therapy, which were then replaced by K65R mutants within 12 weeks of therapy. For most animals, the occurrence of these mutations preceded a partial rebound of plasma viremia to levels that remained on average 10-fold below baseline values. One animal eventually suppressed K65R viremia to undetectable levels for more than 4 years; sequential experiments using CD8+ cell depletion and tenofovir interruption demonstrated that both CD8+ cells and continued tenofovir therapy were required for sustained suppression of viremia.ConclusionThis is the first evidence that tenofovir therapy can select directly for K70E viral mutants in vivo. The observations on the clinical implications of the K65R RT-SHIV mutants were consistent with those of SIVmac251, and suggest that for persons infected with K65R HIV-1 both immune-mediated and drug-dependent antiviral activities play a role in controlling viremia. These findings suggest also that even in the presence of K65R virus, continuation of tenofovir treatment as part of HAART may be beneficial, particularly when assisted by antiviral immune responses

    Partial efficacy of a VSV-SIV/MVA-SIV vaccine regimen against oral SIV challenge in infant macaques

    Get PDF
    Despite antiretroviral medications, the rate of pediatric HIV-1 infections through breast-milk transmission has been staggering in developing countries. Therefore, the development of a vaccine to protect vulnerable infant populations should be actively pursued. We previously demonstrated that oral immunization of newborn macaques with vesicular stomatitis virus expressing simian immunodeficiency virus genes (VSV-SIV) followed 2 weeks later by an intramuscular boost with modified vaccinia ankara virus expressing SIV (MVA-SIV) successfully induced SIV-specific T and B cell responses in multiple lymphoid tissues, including the tonsil and intestine [13]. In the current study, we tested the oral VSV-SIV prime/systemic MVA-SIV boost vaccine for efficacy against multiple oral SIVmac251 challenges starting two weeks after the booster vaccination. The vaccine did not prevent SIV infection. However, in vaccinated infants, the level of SIV-specific plasma IgA (but not IgG) at the time of challenge was inversely correlated with peak viremia. In addition, the levels of SIV-specific IgA in saliva and plasma were inversely correlated with viral load at euthanasia. Animals with tonsils that contained higher frequencies of SIV-specific TNF-α- or IFN-γ-producing CD8+ T cells and central memory T cells at euthanasia also had lower viremia. Interestingly, a marked depletion of CD25+ FoxP3+ CD4+ T cells was observed in the tonsils as well as the intestine of these animals, implying that T regulatory cells may be a major target of SIV infection in infant macaques. Overall, the data suggest that, in infant macaques orally infected with SIV, the co-induction of local antiviral cytotoxic T cells and T regulatory cells that promote the development of IgA responses may result in better control of viral replication. Thus, future vaccination efforts should be directed towards induction of IgA and mucosal T cell responses to prevent or reduce virus replication in infants

    The Relationship between Simian Immunodeficiency Virus RNA Levels and the mRNA Levels of Alpha/Beta Interferons (IFN-α/β) and IFN-α/β-Inducible Mx in Lymphoid Tissues of Rhesus Macaques during Acute and Chronic Infection

    No full text
    To define the role of alpha/beta interferons (IFN-α/β) in simian immunodeficiency virus (SIV) infection, IFN-α and IFN-β mRNA levels and mRNA levels of Mx, an antiviral effector molecule, were determined in lymphoid tissues of rhesus macaques infected with pathogenic SIV. IFN-α/β responses were induced during the acute phase and persisted in various lymphoid tissues throughout the chronic phase of infection. IFN-α/β responses were most consistent in tissues with high viral RNA levels; thus, IFN-α/β responses were not generally associated with effective control of SIV replication. IFN-α/β responses were differentially regulated in different lymphoid tissues and at different stages of infection. The most consistent IFN-α/β responses in acute and chronic SIV infection were observed in peripheral lymph nodes. In the spleen, only a transient increase in IFN-α/β mRNA levels during acute SIV infection was observed. Further, IFN-α and IFN-β mRNA levels showed a tissue-specific expression pattern during the chronic, but not the acute, phase of infection. In the acute phase of infection, SIV RNA levels in lymphoid tissues of rhesus macaques correlated with mRNA levels of both IFN-α and IFN-β, whereas during chronic SIV infection only increased IFN-α mRNA levels correlated with the level of virus replication in the same tissues. In lymphoid tissues of all SIV-infected monkeys, higher viral RNA levels were associated with increased Mx mRNA levels. We found no evidence that monkeys with increased Mx mRNA levels in lymphoid tissues had enhanced control of virus replication. In fact, Mx mRNA levels were associated with high viral RNA levels in lymphoid tissues of chronically infected animals

    Rhesus Macaque Polyclonal and Monoclonal Antibodies Inhibit Simian Immunodeficiency Virus in the Presence of Human or Autologous Rhesus Effector Cells

    No full text
    Although antibodies can prevent or modulate lentivirus infections in nonhuman primates, the biological functions of antibody responsible for such effects are not known. We sought to determine the role of antibody-dependent cell-mediated virus inhibition (ADCVI), an antibody function that inhibits virus yield from infected cells in the presence of Fc receptor-bearing effector cells, in preventing or controlling SIVmac251 infection in rhesus macaques (Macaca mulatta). Using CEMx174 cells infected with simian immunodeficiency virus mac251 (SIVmac251), both polyclonal and monoclonal anti-SIV antibodies were capable of potent virus inhibition in the presence of human peripheral blood mononuclear cell (PBMC) effector cells. In the absence of effector cells, virus inhibition was generally very poor. PBMCs from healthy rhesus macaques were also capable of mediating virus inhibition either against SIVmac251-infected CEMx174 cells or against infected, autologous rhesus target cells. We identified both CD14(+) cells and, to a lesser extent, CD8(+) cells as the effector cell population in the rhesus PBMCs. Finally, pooled, nonneutralizing SIV-antibody-positive serum, shown in a previous study to prevent infection of neonatal macaques after oral SIVmac251 challenge, had potent virus-inhibitory activity in the presence of effector cells; intact immunoglobulin G, rather than F(ab′)(2), was required for such activity. This is the first demonstration of both humoral and cellular ADCVI functions in the macaque-SIV model. ADCVI activity in nonneutralizing serum that prevents SIV infection suggests that ADCVI may be a protective immune function. Finally, our data underscore the potential importance of Fc-Fc receptor interactions in mediating biological activities of antibody

    Structured Treatment Interruptions with Tenofovir Monotherapy for Simian Immunodeficiency Virus-Infected Newborn Macaques

    No full text
    We demonstrated previously that prolonged tenofovir treatment of infant macaques, starting early during infection with virulent simian immunodeficiency virus (SIVmac251), can lead to persistently low or undetectable viremia even after the emergence of mutants with reduced in vitro susceptibility to tenofovir as a result of a K65R mutation in reverse transcriptase; this control of viremia was demonstrated to be mediated by the generation of effective antiviral immune responses. To determine whether structured treatment interruptions (STI) can induce similar immunologic control of viremia, eight newborn macaques were infected with highly virulent SIVmac251 and started on a tenofovir STI regimen 5 days later. Treatment was withdrawn permanently at 33 weeks of age. All animals receiving STI fared much better than 22 untreated SIVmac251-infected infant macaques. However, there was a high variability among animals in the viral RNA set point after complete drug withdrawal, and none of the animals was able to achieve long-term immunologic suppression of viremia to persistently low levels. Early immunologic and viral markers in blood (including the detection of the K65R mutation) were not predictive of the viral RNA set point after drug withdrawal. These results, which reflect the complex interactions between drug resistance mutations, viral virulence, and drug- and immune-mediated inhibition of virus replication, highlight the difficulties associated with trying to develop STI regimens with predictable efficacy for clinical practice
    corecore