30 research outputs found
MRI for Differentiation between HPV-Positive and HPV-Negative Oropharyngeal Squamous Cell Carcinoma:A Systematic Review
Human papillomavirus (HPV) is an important risk factor for oropharyngeal squamous cell carcinoma (OPSCC). HPV-positive (HPV+) cases are associated with a different pathophysiology, microstructure, and prognosis compared to HPV-negative (HPV−) cases. This review aimed to investigate the potential of magnetic resonance imaging (MRI) to discriminate between HPV+ and HPV− tumours and predict HPV status in OPSCC patients. A systematic literature search was performed on 15 December 2022 on EMBASE, MEDLINE ALL, Web of Science, and Cochrane according to PRISMA guidelines. Twenty-eight studies (n = 2634 patients) were included. Five, nineteen, and seven studies investigated structural MRI (e.g., T1, T2-weighted), diffusion-weighted MRI, and other sequences, respectively. Three out of four studies found that HPV+ tumours were significantly smaller in size, and their lymph node metastases were more cystic in structure than HPV− ones. Eleven out of thirteen studies found that the mean apparent diffusion coefficient was significantly higher in HPV− than HPV+ primary tumours. Other sequences need further investigation. Fourteen studies used MRI to predict HPV status using clinical, radiological, and radiomics features. The reported areas under the curve (AUC) values ranged between 0.697 and 0.944. MRI can potentially be used to find differences between HPV+ and HPV− OPSCC patients and predict HPV status with reasonable accuracy. Larger studies with external model validation using independent datasets are needed before clinical implementation.</p
MRI for Differentiation between HPV-Positive and HPV-Negative Oropharyngeal Squamous Cell Carcinoma:A Systematic Review
Human papillomavirus (HPV) is an important risk factor for oropharyngeal squamous cell carcinoma (OPSCC). HPV-positive (HPV+) cases are associated with a different pathophysiology, microstructure, and prognosis compared to HPV-negative (HPV−) cases. This review aimed to investigate the potential of magnetic resonance imaging (MRI) to discriminate between HPV+ and HPV− tumours and predict HPV status in OPSCC patients. A systematic literature search was performed on 15 December 2022 on EMBASE, MEDLINE ALL, Web of Science, and Cochrane according to PRISMA guidelines. Twenty-eight studies (n = 2634 patients) were included. Five, nineteen, and seven studies investigated structural MRI (e.g., T1, T2-weighted), diffusion-weighted MRI, and other sequences, respectively. Three out of four studies found that HPV+ tumours were significantly smaller in size, and their lymph node metastases were more cystic in structure than HPV− ones. Eleven out of thirteen studies found that the mean apparent diffusion coefficient was significantly higher in HPV− than HPV+ primary tumours. Other sequences need further investigation. Fourteen studies used MRI to predict HPV status using clinical, radiological, and radiomics features. The reported areas under the curve (AUC) values ranged between 0.697 and 0.944. MRI can potentially be used to find differences between HPV+ and HPV− OPSCC patients and predict HPV status with reasonable accuracy. Larger studies with external model validation using independent datasets are needed before clinical implementation.</p
MRI for Differentiation between HPV-Positive and HPV-Negative Oropharyngeal Squamous Cell Carcinoma: A Systematic Review
Human papillomavirus (HPV) is an important risk factor for oropharyngeal squamous cell carcinoma (OPSCC). HPV-positive (HPV+) cases are associated with a different pathophysiology, microstructure, and prognosis compared to HPV-negative (HPV−) cases. This review aimed to investigate the potential of magnetic resonance imaging (MRI) to discriminate between HPV+ and HPV− tumours and predict HPV status in OPSCC patients. A systematic literature search was performed on 15 December 2022 on EMBASE, MEDLINE ALL, Web of Science, and Cochrane according to PRISMA guidelines. Twenty-eight studies (n = 2634 patients) were included. Five, nineteen, and seven studies investigated structural MRI (e.g., T1, T2-weighted), diffusion-weighted MRI, and other sequences, respectively. Three out of four studies found that HPV+ tumours were significantly smaller in size, and their lymph node metastases were more cystic in structure than HPV− ones. Eleven out of thirteen studies found that the mean apparent diffusion coefficient was significantly higher in HPV− than HPV+ primary tumours. Other sequences need further investigation. Fourteen studies used MRI to predict HPV status using clinical, radiological, and radiomics features. The reported areas under the curve (AUC) values ranged between 0.697 and 0.944. MRI can potentially be used to find differences between HPV+ and HPV− OPSCC patients and predict HPV status with reasonable accuracy. Larger studies with external model validation using independent datasets are needed before clinical implementation
Relating pre-treatment non-Gaussian intravoxel incoherent motion diffusion-weighted imaging to human papillomavirus status and response in oropharyngeal carcinoma
Background and purpose:Diffusion-weighted imaging (DWI) is a promising technique for response assessment in head-and-neck cancer. Recently, we optimized Non-Gaussian Intravoxel Incoherent Motion Imaging (NG-IVIM), an extension of the conventional apparent diffusion coefficient (ADC) model, for the head and neck. In the current study, we describe the first application in a group of patients with human papillomavirus (HPV)-positive and HPV-negative oropharyngeal squamous cell carcinoma. The aim of this study was to relate ADC and NG-IVIM DWI parameters to HPV status and clinical treatment response. Materials and methods: Thirty-six patients (18 HPV-positive, 18 HPV-negative) were prospectively included. Presence of progressive disease was scored within one year. The mean pre-treatment ADC and NG-IVIM parameters in the gross tumor volume were compared between HPV-positive and HPV-negative patients. In HPV-negative patients, ADC and NG-IVIM parameters were compared between patients with and without progressive disease.Results: ADC, the NG-IVIM diffusion coefficient D, and perfusion fraction f were significantly higher, while pseudo-diffusion coefficient D* and kurtosis K were significantly lower in the HPV-negative compared to HPV-positive patients. In the HPV-negative group, a significantly lower D was found for patients with progressive disease compared to complete responders. No relation with ADC was observed. Conclusion: The results of our single-center study suggest that ADC is related to HPV status, but not an independent response predictor. The NG-IVIM parameter D, however, was independently associated to response in the HPV-negative group. Noteworthy in the opposite direction as previously thought based on ADC.</p
Comprehensive deep learning-based framework for automatic organs-at-risk segmentation in head-and-neck and pelvis for MR-guided radiation therapy planning
Introduction: The excellent soft-tissue contrast of magnetic resonance imaging (MRI) is appealing for delineation of organs-at-risk (OARs) as it is required for radiation therapy planning (RTP). In the last decade there has been an increasing interest in using deep-learning (DL) techniques to shorten the labor-intensive manual work and increase reproducibility. This paper focuses on the automatic segmentation of 27 head-and-neck and 10 male pelvis OARs with deep-learning methods based on T2-weighted MR images.Method: The proposed method uses 2D U-Nets for localization and 3D U-Net for segmentation of the various structures. The models were trained using public and private datasets and evaluated on private datasets only.Results and discussion: Evaluation with ground-truth contours demonstrated that the proposed method can accurately segment the majority of OARs and indicated similar or superior performance to state-of-the-art models. Furthermore, the auto-contours were visually rated by clinicians using Likert score and on average, 81% of them was found clinically acceptable
ELMO1 Is Upregulated in AML CD34+ Stem/Progenitor Cells, Mediates Chemotaxis and Predicts Poor Prognosis in Normal Karyotype AML
Both normal as well leukemic hematopoietic stem cells critically depend on their microenvironment in the bone marrow for processes such as self-renewal, survival and differentiation, although the exact pathways that are involved remain poorly understood. We performed transcriptome analysis on primitive CD34+ acute myeloid leukemia (AML) cells (n = 46), their more differentiated CD34- leukemic progeny, and normal CD34+ bone marrow cells (n = 31) and focused on differentially expressed genes involved in adhesion and migration. Thus, Engulfment and Motility protein 1 (ELMO1) was identified amongst the top 50 most differentially expressed genes. ELMO1 is a crucial link in the signaling cascade that leads to activation of RAC GTPases and cytoskeleton rearrangements. We confirmed increased ELMO1 expression at the mRNA and protein level in a panel of AML samples and showed that high ELMO1 expression is an independent negative prognostic factor in normal karyotype (NK) AML in three large independent patient cohorts. Downmodulation of ELMO1 in human CB CD34+ cells did not significantly alter expansion, progenitor frequency or differentiation in stromal co-cultures, but did result in a decreased frequency of stem cells in LTC-IC assays. In BCR-ABL-transduced human CB CD34+ cells depletion of ELMO1 resulted in a mild decrease in proliferation, but replating capacity of progenitors was severely impaired. Downregulation of ELMO1 in a panel of primary CD34+ AML cells also resulted in reduced long-term growth in stromal co-cultures in two out of three cases. Pharmacological inhibition of the ELMO1 downstream target RAC resulted in a severely impaired proliferation and survival of leukemic cells. Finally, ELMO1 depletion caused a marked decrease in SDF1-induced chemotaxis of leukemic cells. Taken together, these data show that inhibiting the ELMO1-RAC axis might be an alternative way to target leukemic cells
Depletion of SAM50 Specifically Targets BCR-ABL-Expressing Leukemic Stem and Progenitor Cells by Interfering with Mitochondrial Functions
A high proliferation rate of malignant cells requires an increased energy production, both by anaerobic glucose metabolism and mitochondrial respiration. Moreover, increased levels of mitochondria-produced reactive oxygen species (ROS) promote survival of transformed cells and contribute to the disease progression both in solid tumors and leukemia. Consequently, interfering with mitochondrial metabolism has been used as a strategy to specifically target leukemic cells. SAM50 is a mitochondrial outer membrane protein involved in the formation of mitochondrial intermembrane space bridging (MIB) complex. Although the importance of SAM50 in maintaining MIB integrity and in the assembly of mitochondrial respiratory chain complexes has been described, its specific role in the normal and leukemic hematopoietic cells remains unknown. We observed that human leukemic cells display a specific dependency on SAM50 expression, as downregulation of SAM50 in BCR-ABL-expressing, but not normal CD34(+) human hematopoietic stem and progenitor cells (HSPCs) caused a significant decrease in growth, colony formation, and replating capacity. Mitochondrial functions of BCR-ABL-expressing HSPCs were compromised, as seen by a decreased mitochondrial membrane potential and respiration. This effect of SAM50 downregulation was recapitulated in normal HSPCs exposed to cytokine-rich culture conditions that stimulate proliferation. Both oncogene-transduced and cytokine-stimulated HSPCs showed increased mitochondrial membrane potential and increased ROS levels compared to their normal counterparts. Therefore, we postulate that human leukemic HSPCs are highly dependent on the proper functioning of mitochondria and that disruption of mitochondrial integrity may aid in targeting leukemic cells
Global inhibition of RAC activity severely impairs proliferation and survival of leukemic cells while ELMO1 depletion strongly affects migration.
<p>(A) CB CD34<sup>+</sup> cells were transduced with BCR-ABL-expressing vector, sorted and plated on MS5 stroma. Cells were allowed to proliferate for 5 days after which RAC inhibitor was added to the following concentrations: 20 µM, 40 µM or 100 µM. Co-cultures were demi-depopulated on indicated days for analysis. Cumulative cell count is shown representative of 3 independent experiments. (B) CD34<sup>+</sup> cells were sorted from BC CML patient sample and plated on MS5 stroma. Cells were allowed to proliferate for 5 days after which RAC inhibitor was added to the following concentrations: 20 µM, 40 µM or 100 µM. Co-cultures were demi-depopulated on indicated days for analysis. Cumulative cell count is shown representative of 3 independent experiments. (C) BCR-ABL transduced cells as described in (A) were treated with 50 µM NSC for 3 days after which suspension cells were harvested and stained with Annexin V to assess apoptosis. (D) TF-1 and THP-1 cells were transduced with control scrambled shRNA vector (shSCR) or with ELMO1-targeting shRNA vector (shELMO1) and migration was evaluated in a transwell assay. The percentage of migrating cells relative to control is shown as an average of 3 independent experiments.</p