6 research outputs found

    A Variation in 3′ UTR of hPTP1B Increases Specific Gene Expression and Associates with Insulin Resistance

    Get PDF
    Protein tyrosine phosphatase 1B (PTP1B) inhibits insulin signaling and, when overexpressed, plays a role in insulin resistance (Ahmad et al. 1997). We identified, in the 3′ untranslated region of the PTP1B gene, a 1484insG variation that, in two different populations, is associated with several features of insulin resistance: among male individuals, higher values of the insulin resistance HOMA(IR) index (P=.006), serum triglycerides (P=.0002), and total/HDL cholesterol ratio (P=.025) and, among female individuals, higher blood pressure (P=.01). Similar data were also obtained in a family-based association study by use of sib pairs discordant for genotype (Gu et al. 2000). Subjects carrying the 1484insG variant showed also PTP1B mRNA overexpression in skeletal muscle (6,166 ± 1,879 copies/40 ng RNA vs. 2,983 ± 1,620; P<.01). Finally, PTP1B mRNA stability was significantly higher (P<.01) in human embryo kidney 293 cells transfected with 1484insG PTP1B, as compared with those transfected with wild-type PTP1B. Our data indicate that the 1484insG allele causes PTP1B overexpression and plays a role in insulin resistance. Therefore, individuals carrying the 1484insG variant might particularly benefit from PTP1B inhibitors, a promising new tool for treatment of insulin resistance (Kennedy and Ramachandran 2000)

    Characterization of copine VII, a new member of the copine family, and its exclusion as a candidate in sporadic breast cancers with loss of heterozygosity at 16q24.3

    No full text
    Copyright © 1999 Academic PressIn a search for candidate tumor suppressor genes within a 650-kb common region of loss of heterozygosity (LOH) at 16q24.3 in breast cancer tissues, a 2.6-kb cDNA, named copine VII (CPNE7), was characterized. The gene is 2654 bp and codes for a 633-residue protein with high homology to the other members of the copine family, such as copine I, copine III, and N-copine. The predicted amino acid sequence contains two copies of a C2 domain in the N-terminus. Since these domains have been found in several membrane-binding proteins involved in different intracellular processes, copine VII was viewed as a potential tumor suppressor gene. Mutation analysis was carried out by single-strand conformation polymorphism analysis of 18 breast tumor tissue samples with ascertained LOH on chromosome 16q24.3. Since only two polymorphisms were identified, no evidence was found to indicate that copine VII is the tumor suppressor gene at 16q24.3 involved in breast cancer.Maria Savino, Maria d'Apolito, Marta Centra, Hetty M. van Beerendonk, Anne-Marie Cleton-Jansen, Scott A. Whitmore, Joanna Crawford, David F. Callen, Leopoldo Zelante and Anna Savoi

    The genome organisation of the Fanconi Anemia Group A (FAA) Gene

    No full text
    Fanconi anemia (FA) is a genetically heterogenous disease involving at least five genes on the basis of complementation analysis (FAA to FAE). The FAA gene has been recently isolated by two independent approaches, positional and functional cloning. In the present study we describe the genomic structure of the FAA gene. The gene contains 43 exons spanning approximately 80 kb as determined by the alignment of four cosmids and the fine localization of the first and the last exons in restriction fragments of these clones. Exons range from 34 to 188 bp. All but three of the splice sites were consistent with the ag-gt rule. We also describe three alternative splicing events in cDNA clones that result in the loss of exon 37, a 23-bp deletion at the 5' end of exon 41, and a GCAG insertion at the 3' portion also in exon 41. Sequence analysis of the 5' region upstream of the putative transcription start site showed no obvious TATA and CAAT boxes, but did show a GC-rich region, typical of housekeeping genes. Knowledge of the structure of the FAA gene will provide an invaluable resource for the discovery of mutations in the gene that accounts for about 60-66% of FA patients.Leonarda Ianzano, Maria d'Apolito, Marta Centra, Maria Savino, Orna Levran, Arleen D. Auerbach, Anne-Marie Cleton-Jansen, Norman A. Doggett, Jan C. Pronk, Alex J. Tipping, Rachel A. Gibson, Christopher G. Mathew, Scott A. Whitmore, Sinoula Apostolou, David F. Callen, Leopoldo Zelante, Anna Savoi

    Gene Expression Analysis in HBV Transgenic Mouse Liver: A Model to Study Early Events Related to Hepatocarcinogenesis

    Get PDF
    Hepatitis B virus (HBV) is one of the major etiological factors responsible for the development of hepatocellular carcinoma (HCC). We used a transgenic mouse, containing HBV sequences, as a model system to unravel the molecular mechanisms of hepatocarcinogenesis induced by HBV. We chose this animal model because it consistently develops liver cancer after intermediate steps that mimic the natural history of HBV infection in humans. In this study, we focus our attention on the early events leading to liver cancer. We compared the gene expression profile of 3-month-old transgenic mice with that of 3-month-old wild-type (wt) animals. In the transgenic mouse, microarray data analysis showed a total of 45 significantly differentially expressed genes, 25 highly expressed (fold change ≥2; P = 0.0025), and 20 downregulated (fold change ≤0.5; P = 0.0025). These genes belong to several different functional categories such as the regulation of immunological response, transcription, intracellular calcium ion mobilization, regulation of cell cycle and proliferation, NF-κb signal transduction cascades, and apoptosis. In particular, the upregulation of the antiapoptotic gene NuprI and the downregulation of the proapoptotic gene Bnip3 were found. This observation was supported by an in vitro apoptosis assay that showed downregulation of apoptosis in hepatocytes of HBV transgenic mouse compared with wt mice treated with staurosporine. In conclusion, our experimental approach allowed identification of new genes modulated by HBV and showed that the apoptotic process was deregulated in transgenic mouse hepatocytes. These data shed light on one possible mechanism by which HBV induces hepatocarcinogenesis
    corecore