6,054 research outputs found

    Inverting Singlet and Triplet Excited States using Strong Light-Matter Coupling

    Full text link
    In organic microcavities, hybrid light-matter states can form with energies that differ from the bare molecular excitation energies by nearly 1 eV. A timely question, given recent advances in the development of thermally activated delayed fluorescence materials, is whether strong light-matter coupling can be used to invert the ordering of singlet and triplet states and, in addition, enhance reverse intersystem crossing (RISC) rates. Here, we demonstrate a complete inversion of the singlet lower polariton and triplet excited states. We also unambiguously measure the RISC rate in strongly-coupled organic microcavities and find that, regardless of the large energy level shifts, it is unchanged compared to films of the bare molecules. This observation is a consequence of slow RISC to the lower polariton due to the delocalized nature of the state across many molecules and an inability to compete with RISC to the dark exciton reservoir, which occurs at a rate comparable to that in bare molecules

    Triplet harvesting in the polaritonic regime: a variational polaron approach

    Full text link
    We explore the electroluminescence efficiency for a quantum mechanical model of a large number of molecular emitters embedded in an optical microcavity. We characterize the circumstances under which a microcavity enhances harvesting of triplet excitons via reverse intersystem-crossing (R-ISC) into singlet populations that can emit light. For that end, we develop a time-local master equation in a variationally optimized frame which allows for the exploration of the population dynamics of chemically relevant species in different regimes of emitter coupling to the condensed phase vibrational bath and to the microcavity photonic mode. For a vibrational bath that equilibrates faster than R-ISC (in emitters with weak singlet-triplet mixing), our results reveal that significant improvements in efficiencies with respect to the cavity-free counterpart can be obtained for strong coupling of the singlet exciton to a photonic mode, as long as the singlet to triplet exciton transition is within the inverted Marcus regime; under these circumstances, we show the possibility to overcome the detrimental delocalization of the polariton states across a macroscopic number of molecules. On the other hand, for a vibrational bath that equilibrates slower than R-ISC (i.e., emitters with strong singlet-triplet mixing), we find that while enhancemnents in photoluminiscence can be obtained via vibrational relaxation into polaritons, this only occurs for small number of emitters coupled to the photon mode, with delocalization of the polaritons across many emitters eventually being detrimental to electroluminescence efficiency. These findings provide insight on the tunability of optoelectronic processes in molecular materials due to weak and strong light-matter coupling

    Can ultrastrong coupling change ground state chemical reactions?

    Full text link
    Recent advancements on the fabrication of organic micro- and nanostructures have permitted the strong collective light-matter coupling regime to be reached with molecular materials. Pioneering works in this direction have shown the effects of this regime in the excited state reactivity of molecular systems and at the same time has opened up the question of whether it is possible to introduce any modifications in the electronic ground energy landscape which could affect chemical thermodynamics and/or kinetics. In this work, we use a model system of many molecules coupled to a surface-plasmon field to gain insight on the key parameters which govern the modifications of the ground-state Potential Energy Surface (PES). Our findings confirm that the energetic changes per molecule are determined by single-molecule-light couplings which are essentially local, in contrast with those of the electronically excited states, for which energetic corrections are of a collective nature. Still, we reveal some intriguing quantum-coherent effects associated with pathways of concerted reactions, where two or more molecules undergo reactions simultaneously, and which can be of relevance in low-barrier reactions. Finally, we also explore modifications to nonadiabatic dynamics and conclude that, for this particular model, the presence of a large number of dark states yields negligible changes. Our study reveals new possibilities as well as limitations for the emerging field of polariton chemistry

    Riesgo de resultados negativos asociados a inhibidores de la bomba de protones: revisión de las prescripciones electrónicas en pacientes polimedicados

    Get PDF
    Introducción: El elevado consumo de inhibidores de la bomba de protones (IBP) puede incrementar la probabilidad de aparición de interacciones clínicamente relevantes. Pacientes mayores, polimedicados y pluripatológicos representan un grupo de alto riesgo. Se espera que la revisión sistemática de las prescripciones electrónicas (PE) permita detectar potenciales interacciones farmacológicas.Material y métodos: Estudio retrospectivo, transversal y observacional: revisión de las PE de IBP dispensadas entre enero y diciembre de 2015 en una farmacia comunitaria rural.Resultados: 1.186 PE, 164 pacientes (edad 65,7±17,2). Mayor número de pacientes en rango de edad 71-80 (n=52). Medicamentos por paciente: 11,0±5,6. PE IBP sin indicación aprobada: 27%.  Indicación mayoritaria: protección frente a gastrolesión (77%). 29 pacientes (30%) con riesgo de resultados negativos asociados a la medicación (RNM) por omeprazol, 15 de ellos sin indicación. Patologías concomitantes más prevalentes: hipertensión arterial (n=81), dislipemia (n=61) y diabetes (n=36). Principios activos implicados: acenocumarol, hierro, cianocobalamina, escitalopram, benzodiazepinas y clopidogrel.Discusión: El 80% de las PE de omeprazol corresponde a pacientes entre 61 y 90 años, la mayoría con comorbilidad y polifarmacia, y supera el tiempo de tratamiento recomendado. Relacionamos la cronificación y el aumento del riesgo de RNM con la ausencia de un seguimiento adecuado.Muchos fármacos corresponsables del riesgo tratan los problemas de salud (PS) más prevalentes de nuestra población: la probabilidad de interacción resulta independiente de la correcta indicación del IBP.Conclusiones: La revisión de las PE permite valorar el riesgo de RNM y evaluar la información básica relativa al riesgo de interacción.Se detectaron RNM de no necesidad y de inseguridad en proporciones comparables. Un número elevado de PE de omeprazol tienden a cronificarse. Las interacciones más relevantes  registradas ocurren a nivel metabólico

    Measuring kinetic energy changes in the mesoscale with low acquisition rates

    Get PDF
    We describe a new technique to estimate the mean square velocity of a Brownian particle from time series of the position of the particle sampled at frequencies several orders of magnitude smaller than the momentum relaxation frequency. We apply our technique to determine the mean square velocity of single optically trapped polystyrene microspheres immersed in water. The velocity is increased applying a noisy electric field that mimics a higher kinetic temperature. Therefore, we are able to measure the average kinetic energy change in isothermal and non-isothermal quasistatic processes. Moreover, we show that the dependence of the mean square time-averaged velocity on the sampling frequency can be used to quantify properties of the electrophoretic mobility of a charged colloid. Our method could be applied to detect temperature gradients in inhomogeneous media and to characterize the complete thermodynamics of microscopic heat engines.Comment: 9 pages, 5 figure

    Assessment of various Hamiltonian partitionings for the electronic structure problem on a quantum computer using the Trotter approximation

    Get PDF
    Solving the electronic structure problem via unitary evolution of the electronic Hamiltonian is one of the promising applications of digital quantum computers. One of the practical strategies to implement the unitary evolution is via Trotterization, where a sequence of short-time evolutions of fast-forwardable (i.e. efficiently diagonalizable) Hamiltonian fragments is used. Given multiple choices of possible Hamiltonian decompositions to fast-forwardable fragments, the accuracy of the Hamiltonian evolution depends on the choice of the fragments. We assess efficiency of multiple Hamiltonian partitioning techniques using fermionic and qubit algebras for the Trotterization. Use of symmetries of the electronic Hamiltonian and its fragments significantly reduces the Trotter error. This reduction makes fermionic-based partitioning Trotter errors lower compared to those in qubit-based techniques. However, from the simulation-cost standpoint, fermionic methods tend to introduce quantum circuits with a greater number of T-gates at each Trotter step and thus are more computationally expensive compared to their qubit counterparts.Comment: 13 pages, 4 figure
    • …
    corecore