11,402 research outputs found

    Trustee: Full Privacy Preserving Vickrey Auction on top of Ethereum

    Get PDF
    The wide deployment of tokens for digital assets on top of Ethereum implies the need for powerful trading platforms. Vickrey auctions have been known to determine the real market price of items as bidders are motivated to submit their own monetary valuations without leaking their information to the competitors. Recent constructions have utilized various cryptographic protocols such as ZKP and MPC, however, these approaches either are partially privacy-preserving or require complex computations with several rounds. In this paper, we overcome these limits by presenting Trustee as a Vickrey auction on Ethereum which fully preserves bids' privacy at relatively much lower fees. Trustee consists of three components: a front-end smart contract deployed on Ethereum, an Intel SGX enclave, and a relay to redirect messages between them. Initially, the enclave generates an Ethereum account and ECDH key-pair. Subsequently, the relay publishes the account's address and ECDH public key on the smart contract. As a prerequisite, bidders are encouraged to verify the authenticity and security of Trustee by using the SGX remote attestation service. To participate in the auction, bidders utilize the ECDH public key to encrypt their bids and submit them to the smart contract. Once the bidding interval is closed, the relay retrieves the encrypted bids and feeds them to the enclave that autonomously generates a signed transaction indicating the auction winner. Finally, the relay submits the transaction to the smart contract which verifies the transaction's authenticity and the parameters' consistency before accepting the claimed auction winner. As part of our contributions, we have made a prototype for Trustee available on Github for the community to review and inspect it. Additionally, we analyze the security features of Trustee and report on the transactions' gas cost incurred on Trustee smart contract.Comment: Presented at Financial Cryptography and Data Security 2019, 3rd Workshop on Trusted Smart Contract

    Linearization of nonlinear connections on vector and affine bundles, and some applications

    Full text link
    A linear connection is associated to a nonlinear connection on a vector bundle by a linearization procedure. Our definition is intrinsic in terms of vector fields on the bundle. For a connection on an affine bundle our procedure can be applied after homogenization and restriction. Several applications in Classical Mechanics are provided

    Bilepton and exotic quark mass limits in 331 models from Z -> b anti-b decay

    Full text link
    We study the effect of new physics on the Z-decay into b anti-b pairs in the framework of 331 models. The decay Z -> b anti-b is computed at one loop level and, using previous results, we evaluate this branching fraction in the framework of 331 models. A wide range of the space parameter of the model is considered and possible deviations from the standard model predictions are explored. From precision measurements at the Z-pole we find the allowed region for MJ3, MX at 95 % CL.Comment: 15 pages, 4 figure

    Towards a Homotopy Domain Theory

    Full text link
    An appropriate framework is put forward for the construction of λ\lambda-models with ∞\infty-groupoid structure, which we call \textit{homotopic λ\lambda-models} through the use of an ∞\infty-bicategory with cartesian closure and enough points. With this, we establish the start of a project of generalization of Domain Theory and λ\lambda-calculus, in the sense that the concept of proof (path) of equality of λ\lambda-terms is raised to \textit{higher proof} (homotopy)

    A useful form of the recurrence relation between relativistic atomic matrix elements of radial powers

    Full text link
    Recently obtained recurrence formulae for relativistic hydrogenic radial matrix elements are cast in a simpler and perhaps more useful form. This is achieved with the help of a new relation between the rar^a and the ÎČrb\beta r^b terms (ÎČ\beta is a 4×44\times 4 Dirac matrix and a,ba, b are constants) in the atomic matrix elements.Comment: 7 pages, no figure
    • 

    corecore