85 research outputs found

    Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy

    Get PDF
    Mesenchymal stem cells (MSCs) are among the most frequently used cell type for regenerative medicine. A large number of studies have shown the beneficial effects of MSC-based therapies to treat different pathologies, including neurological disorders, cardiac ischemia, diabetes, and bone and cartilage diseases. However, the therapeutic potential of MSCs in cancer is still controversial. While some studies indicate that MSCs may contribute to cancer pathogenesis, emerging data reported the suppressive effects of MSCs on cancer cells. Because of this reality, a sustained effort to understand when MSCs promote or suppress tumor development is needed before planning a MSC-based therapy for cancer. Herein, we provide an overview on the therapeutic application of MSCs for regenerative medicine and the processes that orchestrates tissue repair, with a special emphasis placed on cancer, including central nervous system tumors. Furthermore, we will discuss the current evidence regarding the double-edged sword of MSCs in oncological treatment and the latest advances in MSC-based anti-cancer agent delivery systems.Junta de Andalucía PI-0272-2017Ministerio de Ciencia, Innovación y Universdad CD16/00118, CP19/00046, PI16/00259, BFU2017-83588-P, CP14/00105, PI18/01590, PI17/02104, PIC18/0010, IC19/0052Juvenile Diabetes Research Foundation (USA) 2-SRA-2019-837-S-BFundación Española para la Ciencia y la Tecnología 2018-00023

    Restriction of cytosolic Acetyl-CoA to promote healthy aging

    Get PDF
    Motivation: During the last century humans have reached the longest lifespan in History. However, the increase on lifespan is associated to the development of age-related diseases that limit the quality of life of aged individuals (1). Therefore, there is a current need to determine the molecular mechanisms underlining age-related pathologies and to develop novel effective therapies for these diseases. Acetyl-CoA (Ac-CoA) is a central metabolite in energy metabolism involved in protein acetylation, fatty acid synthesis and cholesterol synthesis (2,3), which may play a significant role modulating the intrinsic processes of aging. In this work, we studied the effects of 4 cytosolic Ac-CoA reducing agents; two inhibitors of the ATP citrate lyase; SB-204990 (SB) and hydroxycitric acid (HCA), an inhibitor of Ac-CoA synthase; allicin, and a inhibitor of the citrate isocitrate carrier; 1,2,3-benzenetricarboxylic acid (BTC).Methods: Mice were fed a Standard Diet (STD) or a High Fat Diet (HFD) supplemented with SB for 15 weeks. After in vivo studies, we performed WB on metabolic tissues. In liver tissue we performed a proteomic analysis by iTRAQ (Isobaric tags for relative and absolute quantification). In parallel, we have initiated a longevity assay using HCA. Necropsies have been performed to determine the cause of death. Finally, we are currently investigating the effects of BTC and allicin in murine physiology using three experimental approaches; a healthy STD, a prophylactic treatment using an obesogenic/diabetogenic HFD and a therapeutic treatment used in obese mice.Results: Preliminary in vivo results have shown improvements in metabolic health on mice treated with SB. Ex vivo analyses have indicated that SB modulates lipid metabolism. Proteomic analyses revealed a decrease in the expression of proinflammatory proteins in SB-treated and HFD-fed mice. HCA supplementation in healthy STD-fed mice has resulted in delayed early mortality in mice. Additionally, HCA treatment revealed potential benefits in muscle strength in wirehang test. Our research using BTC and allicin will generate results in the nearly future.Conclusions: Results of SB-treated and HFD-fed mice show a robust modulation in lipid metabolism and in inflammatory pathways, suggesting that the intervention could rescue the phenotype associated to a metabolic deregulation. The improvements observed in HCA-treated mice suggest that HCA could have geroprotective effects in early mortality

    The ACLY inhibitor SB204990 does not alter lysine histone acetylation in mouse liver

    Get PDF
    Motivation: Acetyl-coenzyme A is a fundamental component of cell metabolism, which plays a role in energy production, macromolecular biosynthesis and protein modification. Within the mitocondria, acetyl-coenzyme A condensation with oxaloacetate generates citrate, which can be exported to the cytosol, where is cleavaged by ATP-citrate lyase (ACLY), producing again acetyl-coenzyme A and oxaloacetate. In the nucleus and the cytoplasm acetyl-coenzyme A is used for important cellular functions such as histone acetylation or fatty acid synthesis. Silencing or inhibition of ACLY impairs tumor growth and produces blood lipid-lowering effects. Moreover, ACLY inhibitors are reasonably well tolerated in adult animals. Thus, ACLY inhibition could represent a therapeutic opportunity for the treatment of cancer and metabolic diseases, making its mechanistic understanding a promising field of study. Histone acetylation is a molecular mechanism that controls gene expression. Previous data has shown that global histone acetylation is latered in ACLY-deficient cell lines. Herein, we evaluated whether beneficial metabolic effects observed in mice exposed for 16 weeks to a pharmacological inhibitor of the ACLY are associated to modulations in histone acetylation in liver tissue lysates. Methods: An histone acid extraction wass conducted using the livers of mice exposed to 4 experimental conditions: standard diet, standard diet + SB (250 mg/Kg of food), high fat diet and high fat diet + SB (250 mg/Kg of food). Samples were procesed and western blots using specific antibodies of several histone-lysines were performed to evaluate potential modulations on histone acetylation levels between. Results and conclusions: Current data indicates that acetylation levels of H3K9, H3K14, H3K18, H3K56, H4K5, H4K8 are not significantly altered in the different experimental conditions. These results indicate that beneficial effects produced by ACLY inhibition are not caused by changes in histone acetylation in the liver

    Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet

    Get PDF
    PMID:24093677.-- et al.Obesity is associated with a chronic, low-grade, systemic inflammation that may contribute to the development of insulin resistance and type 2 diabetes. Resveratrol, a natural compound with anti-inflammatory properties, is shown to improve glucose tolerance and insulin sensitivity in obese mice and humans. Here, we tested the effect of a 2-year resveratrol administration on proinflammatory profile and insulin resistance caused by a high-fat, high-sugar (HFS) diet in white adipose tissue (WAT) from rhesus monkeys. Resveratrol supplementation (80 and 480 mg/day for the first and second year, respectively) decreased adipocyte size, increased sirtuin 1 expression, decreased NF-κB activation, and improved insulin sensitivity in visceral, but not subcutaneous, WAT from HFS-fed animals. These effects were reproduced in 3T3-L1 adipocytes cultured in media supplemented with serum from monkeys fed HFS ± resveratrol diets. In conclusion, chronic administration of resveratrol exerts beneficial metabolic and inflammatory adaptations in visceral WAT from diet-induced obese monkeys.This work was funded by the Intramural Research Program of the National Institute on Aging, NIH; the Office of Dietary Supplements, NIH; and by the NIH R01 DK075772 (to J.S.B.) and F30 DK093198 (to J.P.B.). Y.J.-G. was supported by a Sara Borrell fellowship of the Institute de Salud Carlos III (CD07/00208) and by a grant for actividades y estancias formativas of the Consejeria de Salud, Junta de Andalucia (EF-0122/2010), Spain.Peer reviewe

    NRF2, cancer and calorie restriction

    Get PDF
    16 páginas, 1 figura, 3 tablas.-- PMCID: PMC4684645The transcription factor NF-E2-related factor (NRF2) is a key regulator of several enzymatic pathways, including cytoprotective enzymes in highly metabolic organs. In this review, we summarize the ongoing research related to NRF2 activity in cancer development, focusing on in vivo studies using NRF2 knockout (KO) mice, which have helped in defining the crucial role of NRF2 in chemoprevention. The lower cancer protection observed in NRF2 KO mice under calorie restriction (CR) suggests that most of the beneficial effects of CR on the carcinogenesis process are likely mediated by NRF2. We propose that future interventions in cancer treatment would be carried out through the activation of NRF2 in somatic cells, which will lead to a delay or prevention of the onset of some forms of human cancers, and subsequently an extension of health- and lifespan.AM-M and RdC are supported by the Intramural Research Program of the National Institute on Aging, National Institutes of Health. The work was partially supported by Junta de Andalucía International Projects, CVI 4887 and CVI-276, NIH Grant 1R01AG028125-01A1 and FIS Grant PI080500 of the Ministry of Health, Spain.Peer reviewe

    Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans

    Get PDF
    PMCID: PMC3357623.-- et al.Mutations in growth signaling pathways extend life span, as well as protect against age-dependent DNA damage in yeast and decrease insulin resistance and cancer in mice. To test their effect in humans, we monitored for 22 years Ecuadorian individuals who carry mutations in the growth hormone receptor (GHR) gene that lead to severe GHR and IGF-1 (insulin-like growth factor-1) deficiencies. We combined this information with surveys to identify the cause and age of death for individuals in this community who died before this period. The individuals with GHR deficiency exhibited only one nonlethal malignancy and no cases of diabetes, in contrast to a prevalence of 17% for cancer and 5% for diabetes in control subjects. A possible explanation for the very low incidence of cancer was suggested by in vitro studies: Serum from subjects with GHR deficiency reduced DNA breaks but increased apoptosis in human mammary epithelial cells treated with hydrogen peroxide. Serum from GHR-deficient subjects also caused reduced expression of RAS, PKA (protein kinase A), and TOR (target of rapamycin) and up-regulation of SOD2 (superoxide dismutase 2) in treated cells, changes that promote cellular protection and life-span extension in model organisms. We also observed reduced insulin concentrations (1.4 mU/ml versus 4.4 mU/ml in unaffected relatives) and a very low HOMA-IR (homeostatic model assessment-insulin resistance) index (0.34 versus 0.96 in unaffected relatives) in individuals with GHR deficiency, indicating higher insulin sensitivity, which could explain the absence of diabetes in these subjects. These results provide evidence for a role of evolutionarily conserved pathways in the control of aging and disease burden in humans.This study was funded in part by NIH–National Institute on Aging (NIA) grants AG20642 and AG025135 to V.D.L.; Ted Bakewell (The Bakewell Foundation), the V Foundation for Cancer Research, and a University of Southern California Center for Excellence in Genomic Science pilot grant to V.D.L.; grant 1P30 DK063491to P.C.; the Institute of Endocrinology, Metabolism and Reproduction, Ecuador; and the Intramural Research Program of the NIH-NIA.Peer Reviewe

    PAX4 preserves endoplasmic reticulum integrity preventing beta cell degeneration in a mouse model of type 1 diabetes mellitus

    Get PDF
    [Aims/hypothesis]: A strategy to enhance pancreatic islet functional beta cell mass (BCM) while restraining inflammation, through the manipulation of molecular and cellular targets, would provide a means to counteract the deteriorating glycaemic control associated with diabetes mellitus. The aims of the current study were to investigate the therapeutic potential of such a target, the islet-enriched and diabetes-linked transcription factor paired box 4 (PAX4), to restrain experimental autoimmune diabetes (EAD) in the RIP-B7.1 mouse model background and to characterise putative cellular mechanisms associated with preserved BCM. [Methods]: Two groups of RIP-B7.1 mice were genetically engineered to: (1) conditionally express either PAX4 (BPTL) or its diabetes-linked mutant variant R129W (mutBPTL) using doxycycline (DOX); and (2) constitutively express luciferase in beta cells through the use of RIP. Mice were treated or not with DOX, and EAD was induced by immunisation with a murine preproinsulin II cDNA expression plasmid. The development of hyperglycaemia was monitored for up to 4 weeks following immunisation and alterations in the BCM were assessed weekly by non-invasive in vivo bioluminescence intensity (BLI). In parallel, BCM, islet cell proliferation and apoptosis were evaluated by immunocytochemistry. Alterations in PAX4- and PAX4R129W-mediated islet gene expression were investigated by microarray profiling. PAX4 preservation of endoplasmic reticulum (ER) homeostasis was assessed using thapsigargin, electron microscopy and intracellular calcium measurements. [Results]: PAX4 overexpression blunted EAD, whereas the diabetes-linked mutant variant PAX4R129W did not convey protection. PAX4-expressing islets exhibited reduced insulitis and decreased beta cell apoptosis, correlating with diminished DNA damage and increased islet cell proliferation. Microarray profiling revealed that PAX4 but not PAX4R129W targeted expression of genes implicated in cell cycle and ER homeostasis. Consistent with the latter, islets overexpressing PAX4 were protected against thapsigargin-mediated ER-stress-related apoptosis. Luminal swelling associated with ER stress induced by thapsigargin was rescued in PAX4-overexpressing beta cells, correlating with preserved cytosolic calcium oscillations in response to glucose. In contrast, RNA interference mediated repression of PAX4-sensitised MIN6 cells to thapsigargin cell death. [Conclusions/interpretation]: The coordinated regulation of distinct cellular pathways particularly related to ER homeostasis by PAX4 not achieved by the mutant variant PAX4R129W alleviates beta cell degeneration and protects against diabetes mellitus. The raw data for the RNA microarray described herein are accessible in the Gene Expression Omnibus database under accession number GSE62846

    Generation of mesenchymal stromal cells from urine-derived iPSCs of pediatric brain tumor patients

    Get PDF
    Human induced pluripotent stem cells (iPSCs) provide a virtually inexhaustible source of starting material for next generation cell therapies, offering new opportunities for regenerative medicine. Among different cell sources for the generation of iPSCs, urine cells are clinically relevant since these cells can be repeatedly obtained by non-invasive methods from patients of any age and health condition. These attributes encourage patients to participate in preclinical and clinical research. In particular, the use of urine-derived iPSC products is a convenient strategy for children with brain tumors, which are medically fragile patients. Here, we investigate the feasibility of using urine samples as a source of somatic cells to generate iPSC lines from pediatric patients with brain tumors (BT-iPSC). Urinary epithelial cells were isolated and reprogrammed using non-integrative Sendai virus vectors harboring the Yamanaka factors KLF4, OCT3/4, SOX2 and C-MYC. After reprogramming, BT-iPSC lines were subject to quality assessment and were compared to iPSCs obtained from urine samples of non-tumor pediatric patients (nonT-iPSC). We demonstrated that iPSCs can be successfully derived from a small volume of urine obtained from pediatric patients. Importantly, we showed that BT-iPSCs are equivalent to nonT-iPSCs in terms of morphology, pluripotency, and differentiation capacity into the three germ layers. In addition, both BT-iPSCs and nonT-iPSCs efficiently differentiated into functional mesenchymal stem/stromal cells (iMSC) with immunomodulatory properties. Therefore, this study provides an attractive approach to non-invasively generate personalized iMSC products intended for the treatment of children with brain tumors

    NQR1 controls lifespan by regulating the promotion of respiratory metabolism in yeast

    Get PDF
    22 páginas, 8 figuras.The activity and expression of plasma membrane NADH coenzyme Q reductase is increased by calorie restriction (CR) in rodents. Although this effect is well-established and is necessary for CR's ability to delay aging, the mechanism is unknown. Here we show that the Saccharomyces cerevisiae homolog, NADH-Coenzyme Q reductase 1 (NQR1), resides at the plasma membrane and when overexpressed extends both replicative and chronological lifespan. We show that NQR1 extends replicative lifespan in a SIR2-dependent manner by shifting cells towards respiratory metabolism. Chronological lifespan extension, in contrast, occurs via an SIR2-independent decrease in ethanol production. We conclude that NQR1 is a key mediator of lifespan extension by CR through its effects on yeast metabolism and discuss how these findings could suggest a function for this protein in lifespan extension in mammals.The work was supported by the Spanish Ministerio de Ciencia y Tecnología, Grant BFU2005-03017/BMC, by APP2E04053 Grant of the Universidad Pablo de Olavide, and in part by the Intramural Research Program of the National Institute on Aging, National Institutes of Health

    A simple high efficiency intra-islet transduction protocol using lentiviral vectors

    Get PDF
    Successful normalization of blood glucose in patients transplanted with pancreatic islets isolated from cadaveric donors established the proof-of-concept that Type 1 Diabetes Mellitus is a curable disease. Nonetheless, major caveats to the widespread use of this cell therapy approach have been the shortage of islets combined with the low viability and functional rates subsequent to transplantation. Gene therapy targeted to enhance survival and performance prior to transplantation could offer a feasible approach to circumvent these issues and sustain a durable functional β-cell mass in vivo. However, efficient and safe delivery of nucleic acids to intact islet remains a challenging task. Here we describe a simple and easy-to-use lentiviral transduction protocol that allows the transduction of approximately 80 % of mouse and human islet cells while preserving islet architecture, metabolic function and glucose-dependent stimulation of insulin secretion. Our protocol will facilitate to fully determine the potential of gene expression modulation of therapeutically promising targets in entire pancreatic islets for xenotransplantation purposes
    corecore