7 research outputs found

    CENP-meta, an Essential Kinetochore Kinesin Required for the Maintenance of Metaphase Chromosome Alignment in Drosophila

    Get PDF
    CENP-meta has been identified as an essential, kinesin-like motor protein in Drosophila. The 257-kD CENP-meta protein is most similar to the vertebrate kinetochore-associated kinesin-like protein CENP-E, and like CENP-E, is shown to be a component of centromeric/kinetochore regions of Drosophila chromosomes. However, unlike CENP-E, which leaves the centromere/kinetochore region at the end of anaphase A, the CENP-meta protein remains associated with the centromeric/kinetochore region of the chromosome during all stages of the Drosophila cell cycle. P-element–mediated disruption of the CENP-meta gene leads to late larval/pupal stage lethality with incomplete chromosome alignment at metaphase. Complete removal of CENP-meta from the female germline leads to lethality in early embryos resulting from defects in metaphase chromosome alignment. Real-time imaging of these mutants with GFP-labeled chromosomes demonstrates that CENP-meta is required for the maintenance of chromosomes at the metaphase plate, demonstrating that the functions required to establish and maintain chromosome congression have distinguishable requirements

    TEX11 is mutated in infertile men with azoospermia and regulates genome-wide recombination rates in mouse

    Get PDF
    Genome‐wide recombination is essential for genome stability, evolution, and speciation. Mouse Tex11, an X‐linked meiosis‐specific gene, promotes meiotic recombination and chromosomal synapsis. Here, we report that TEX11 is mutated in infertile men with non‐obstructive azoospermia and that an analogous mutation in the mouse impairs meiosis. Genetic screening of a large cohort of idiopathic infertile men reveals that TEX11 mutations, including frameshift and splicing acceptor site mutations, cause infertility in 1% of azoospermic men. Functional evaluation of three analogous human TEX11 missense mutations in transgenic mouse models identified one mutation (V748A) as a potential infertility allele and found two mutations non‐causative. In the mouse model, an intronless autosomal Tex11 transgene functionally substitutes for the X‐linked Tex11 gene, providing genetic evidence for the X‐to‐autosomal retrotransposition evolution phenomenon. Furthermore, we find that TEX11 protein levels modulate genome‐wide recombination rates in both sexes. These studies indicate that TEX11 alleles affecting expression level or substituting single amino acids may contribute to variations in recombination rates between sexes and among individuals in humans.Howard Hughes Medical Institute (Award)National Institutes of Health (U.S.) (NIH/NIGMS grant R01GM076327

    Remarkably Little Variation in Proteins Encoded by the Y Chromosome’s Single-Copy Genes, Implying Effective Purifying Selection

    Get PDF
    Y-linked single-nucleotide polymorphisms (SNPs) have served as powerful tools for reconstructing the worldwide genealogy of human Y chromosomes and for illuminating patrilineal relationships among modern human populations. However, there has been no systematic, worldwide survey of sequence variation within the protein-coding genes of the Y chromosome. Here we report and analyze coding sequence variation among the 16 single-copy “X-degenerate” genes of the Y chromosome. We examined variation in these genes in 105 men representing worldwide diversity, resequencing in each man an average of 27 kb of coding DNA, 40 kb of intronic DNA, and, for comparison, 15 kb of DNA in single-copy Y-chromosomal pseudogenes. There is remarkably little variation in X-degenerate protein sequences: two chromosomes drawn at random differ on average by a single amino acid, with half of these differences arising from a single, conservative Asp→Glu mutation that occurred ∼50,000 years ago. Further analysis showed that nucleotide diversity and the proportion of variant sites are significantly lower for nonsynonymous sites than for synonymous sites, introns, or pseudogenes. These differences imply that natural selection has operated effectively in preserving the amino acid sequences of the Y chromosome's X-degenerate proteins during the last ∼100,000 years of human history. Thus our findings are at odds with prominent accounts of the human Y chromosome's imminent demise.Howard Hughes Medical InstituteNational Institutes of Health (U.S.

    High mutation rates have driven extensive structural among human Y chromosomes

    No full text
    Although much structural polymorphism in the human genome has been catalogued 1–5, the kinetics of underlying change remain largely unexplored. Because human Y chromosomes are clonally inherited, it has been possible to capture their detailed relationships in a robust, worldwide genealogical tree 6,7. Examination of structural variation across this tree opens avenues for investigating rates of underlying mutations. We selected one Y chromosome from each of 47 branches of this tree and searched for large-scale variation. Four chromosomal regions showed extensive variation resulting from numerous large-scale mutations. Within the tree encompassed by the studied chromosomes, the distal-Yq heterochromatin changed length Z12 times, the TSPY gene array changed length Z23 times, the 3.6-Mb IR3/IR3 region changed orientation Z12 times and the AZFc region was rearranged Z20 times. Afte

    Publications

    No full text
    corecore