4,202 research outputs found

    Method for optimal configuration of an ECLSS on the Space Station Freedom

    Get PDF
    The establishment of a permanently manned Space Station represents a substantial challenge in the design of a life support system, specifically in the need to supply a large crew for missions of extended duration. The Space Station will evolve by time phased modular increments delivered and supplied by the Space Shuttle and other advanced launch systems. With the addition of each subsequent phase or alteration of mission duties, the requirements of the Station may differ from previous phases of development. With the addition of future crews and pressurized volume throughout the lifetime of the Space Station, change-out of individual subsystems may be necessary in order to meet the performance, safety, and reliability levels required from the Environmental Control and Life Support System (ECLSS). The analysis of this system growth demands the capability for advanced, integrated assessment techniques so that the unique mission drivers during each phase and mission scenario may be identified and evaluated. In order to determine the impacts of the interdependency between the ECLSS, the crew, the various user experiments, and the other distributed systems, consideration must be given to all Space Station resources and requirements during the initial and subsequent evolution phase. Therefore, it is necessary for analysis efforts to study the long term effects of established designs. These studies must quantify the optimal degree of loop closure within the capabilities of existing and future technologies including any resulting maintenance and logistics requirements. In addition, the necessity for subsystem retrofit during the lifetime of the Station must be examined. The source of system requirements due to long term exposure to the microgravity environment is illustrated, the criticality of the ECLSS functions is reviewed, and a method is described to develop an optimal design during each configuration based on the cross-consumption of Station resources. A comparison utilizing this procedure is discussed

    Weak Ferromagnetic Exchange and Anomalous Specific Heat in ZnCu3(OH)6Cl2

    Full text link
    Experimental evidence for a plethora of low energy spin excitations in the spin-1/2 kagome antiferromagnet ZnCu3(OH)6Cl2 may be understandable in terms of an extended Fermi surface of spinons coupled to a U(1) gauge field. We carry out variational calculations to examine the possibility that such a state may be energetically viable. A Gutzwiller-projected wavefunction reproduces the dimerization of a kagome strip found previously by DMRG. Application to the full kagome lattice shows that the inclusion of a small ferromagnetic next-nearest-neighbor interaction favors a ground state with a spinon Fermi surface.Comment: 4 pages, 3 figures, some clarifications to the tex

    Statistics of the General Circulation from Cumulant Expansions

    Full text link
    Large-scale atmospheric flows may not be so nonlinear as to preclude their statistical description by systematic expansions in cumulants. I extend previous work by examining a two-layer baroclinic model of the general circulation. The fixed point of the cumulant expansion describes the statistically steady state of the out-of-equilibrium model. Equal-time statistics so obtained agree well with those accumulated by direct numerical simulation.Comment: 1 page paper with 4 figures that accompanies one of the winning entries in the APS gallery of nonlinear images competitio

    Confinement of matter fields in compact (2+1)-dimensional QED theory of high-TcT_{c} superconductors

    Full text link
    We study confinement of matter fields in the effective compact (2+1)-dimensional QED theory of high-TcT_{c} superconductors. It is shown that the monopole configurations do not affect the propagator of gauge potential aμa_{\mu}. Based on this result, we found that: chiral symmetry breaking and confinement take place simultaneously in the antiferromagnetic state; neither monopole effect nor Anderson-Higgs mechanism can cause confinement in the d-wave superconducting state.Comment: 5 pages, no figure
    • …
    corecore