9 research outputs found

    Dynamics of immune effector mechanisms during infection with Mycobacterium aviumin C57BL/6 mice

    No full text
    Opportunistic infections with non-tuberculous mycobacteria such as Mycobacterium avium are receiving renewed attention because of increased incidence and difficulties in treatment. As for other mycobacterial infections, a still poorly understood collaboration of different immune effector mechanisms is required to confer protective immunity. Here we have characterized the interplay of innate and adaptive immune effector mechanisms contributing to containment in a mouse infection model using virulent M. avium strain 104 in C57BL/6 mice. M. avium caused chronic infection in mice, as shown by sustained organ bacterial load. In the liver, bacteria were contained in granuloma-like structures that could be defined morphologically by expression of the antibacterial innate effector protein Lipocalin 2 in the adjoining hepatocytes and infiltrating neutrophils, possibly contributing to containment. Circulatory antimycobacterial antibodies steadily increased throughout infection and were primarily of the IgM isotype. Highest levels of interferon-c were found in infected liver, spleen and serum of mice approximately 2 weeks post infection and coincided with a halt in organ bacterial growth. In contrast, expression of tumour necrosis factor was surprisingly low in spleen compared with liver. We did not detect interleukin-17 in infected organs or M. avium-specific T helper 17 cells, suggesting a minor role for T helper 17 cells in this model. A transient and relative decrease in regulatory T cell numbers was seen in spleens. This detailed characterization of M. avium infection in C57BL/6 mice may provide a basis for future studies aimed at gaining better insight into mechanisms leading to containment of infections with non-tuberculous mycobacteria

    Global Assessment of Mycobacterium avium subsp. hominissuis Genetic Requirement for Growth and Virulence

    Get PDF
    Nontuberculous mycobacterial infections caused by the opportunistic pathogen Mycobacterium avium subsp. hominissuis (MAH) are currently receiving renewed attention due to increased incidence combined with difficult treatment. Insights into the disease-causing mechanisms of this species have been hampered by difficulties in genetic manipulation of the bacteria. Here, we identified and sequenced a highly transformable, virulent MAH clinical isolate susceptible to high-density transposon mutagenesis, facilitating global gene disruption and subsequent investigation of MAH gene function. By transposon insertion sequencing (TnSeq) of this strain, we defined the MAH genome-wide genetic requirement for virulence and in vitro growth and organized ∼3,500 identified transposon mutants for hypothesis-driven research. The majority (96%) of the genes we identified as essential for MAH in vitro had a mutual ortholog in the related and highly virulent Mycobacterium tuberculosis (Mtb). However, passaging our library through a mouse model of infection revealed a substantial number (54% of total hits) of novel virulence genes. More than 97% of the MAH virulence genes had a mutual ortholog in Mtb. Finally, we validated novel genes required for successful MAH infection: one encoding a probable major facilitator superfamily (MFS) transporter and another encoding a hypothetical protein located in the immediate vicinity of six other identified virulence genes. In summary, we provide new, fundamental insights into the underlying genetic requirement of MAH for growth and host infection

    Genetic Variation/Evolution and Differential Host Responses Resulting from In-Patient Adaptation of Mycobacterium avium

    No full text
    Members of the Mycobacterium avium complex (MAC) are characterized as nontuberculosis mycobacteria and are pathogenic mainly in immunocompromised individuals. MAC strains show a wide genetic variability, and there is growing evidence suggesting that genetic differences may contribute to a varied immune response that may impact the infection outcome. The current study aimed to characterize the genomic changes within M. avium isolates collected from single patients over time and test the host immune responses to these clinical isolates. Pulsed-field gel electrophoresis and whole-genome sequencing were performed on 40 MAC isolates isolated from 15 patients at the Department of Medical Microbiology at St. Olavs Hospital in Trondheim, Norway. Isolates from patients (patients 4, 9, and 13) for whom more than two isolates were available were selected for further analysis. These isolates exhibited extensive sequence variation in the form of single-nucleotide polymorphisms (SNPs), suggesting that M. avium accumulates mutations at higher rates during persistent infections than other mycobacteria. Infection of murine macrophages and mice with sequential isolates from patients showed a tendency toward increased persistence and the downregulation of inflammatory cytokines by host-adapted M. avium strains. The study revealed the rapid genetic evolution of M. avium in chronically infected patients, accompanied by changes in the virulence properties of the sequential mycobacterial isolates

    Lipocalin 2 imparts selective pressure on bacterial growth in the bladder and is elevated in women with urinary tract infection

    No full text
    Competition for iron is a critical component of successful bacterial infections, but the underlying in vivo mechanisms are poorly understood. We have previously demonstrated that lipocalin 2 (LCN2) is an innate immunity protein that binds to bacterial siderophores and starves them for iron, thus representing a novel host defense mechanism to infection. In the present study we show that LCN2 is secreted by the urinary tract mucosa and protects against urinary tract infection (UTI). We found that LCN2 was expressed in the bladder, ureters, and kidneys of mice subject to UTI. LCN2 was protective with higher bacterial numbers retrieved from bladders of Lcn2-deficient mice than from wild-type mice infected with the LCN2-sensitive Escherichia coli strain H9049. Uropathogenic E. coli mutants in siderophore receptors for salmochelin, aerobactin, or yersiniabactin displayed reduced fitness in wild-type mice, but not in mice deficient of LCN2, demonstrating that LCN2 imparts a selective pressure on bacterial growth in the bladder. In a human cohort of women with recurrent E. coli UTIs, urine LCN2 levels were associated with UTI episodes and with levels of bacteriuria. The number of siderophore systems was associated with increasing bacteriuria during cystitis. Our data demonstrate that LCN2 is secreted by the urinary tract mucosa in response to uropathogenic E. coli challenge and acts in innate immune defenses as a colonization barrier that pathogens must overcome to establish infection

    Plasma membrane damage causes NLRP3 activation and pyroptosis during Mycobacterium tuberculosis infection

    No full text
    Mycobacterium tuberculosis is a global health problem in part as a result of extensive cytotoxicity caused by the infection. Here, we show how M. tuberculosis causes caspase-1/NLRP3/gasdermin D-mediated pyroptosis of human monocytes and macrophages. A type VII secretion system (ESX-1) mediated, contact-induced plasma membrane damage response occurs during phagocytosis of bacteria. Alternatively, this can occur from the cytosolic side of the plasma membrane after phagosomal rupture in infected macrophages. This damage causes K+ efflux and activation of NLRP3-dependent IL-1β release and pyroptosis, facilitating the spread of bacteria to neighbouring cells. A dynamic interplay of pyroptosis with ESCRT-mediated plasma membrane repair also occurs. This dual plasma membrane damage seems to be a common mechanism for NLRP3 activators that function through lysosomal damage

    Plasma membrane damage causes NLRP3 activation and pyroptosis during Mycobacterium tuberculosis infection

    No full text
    Mycobacterium tuberculosis is a global health problem in part as a result of extensive cytotoxicity caused by the infection. Here, we show how M. tuberculosis causes caspase-1/NLRP3/gasdermin D-mediated pyroptosis of human monocytes and macrophages. A type VII secretion system (ESX-1) mediated, contact-induced plasma membrane damage response occurs during phagocytosis of bacteria. Alternatively, this can occur from the cytosolic side of the plasma membrane after phagosomal rupture in infected macrophages. This damage causes K+ efflux and activation of NLRP3-dependent IL-1β release and pyroptosis, facilitating the spread of bacteria to neighbouring cells. A dynamic interplay of pyroptosis with ESCRT-mediated plasma membrane repair also occurs. This dual plasma membrane damage seems to be a common mechanism for NLRP3 activators that function through lysosomal damage

    Lipocalin 2 Imparts Selective Pressure on Bacterial Growth in the Bladder and Is Elevated in Women with Urinary Tract Infection

    No full text
    Competition for iron is a critical component of successful bacterial infections, but the underlying in vivo mechanisms are poorly understood. We have previously demonstrated that lipocalin 2 (LCN2) is an innate immunity protein that binds to bacterial siderophores and starves them for iron, thus representing a novel host defense mechanism to infection. In the present study we show that LCN2 is secreted by the urinary tract mucosa and protects against urinary tract infection (UTI). We found that LCN2 was expressed in the bladder, ureters, and kidneys of mice subject to UTI. LCN2 was protective with higher bacterial numbers retrieved from bladders of Lcn2-deficient mice than from wild-type mice infected with the LCN2-sensitive Escherichia coli strain H9049. Uropathogenic E. coli mutants in siderophore receptors for salmochelin, aerobactin, or yersiniabactin displayed reduced fitness in wild-type mice, but not in mice deficient of LCN2, demonstrating that LCN2 imparts a selective pressure on bacterial growth in the bladder. In a human cohort of women with recurrent E. coli UTIs, urine LCN2 levels were associated with UTI episodes and with levels of bacteriuria. The number of siderophore systems was associated with increasing bacteriuria during cystitis. Our data demonstrate that LCN2 is secreted by the urinary tract mucosa in response to uropathogenic E. coli challenge and acts in innate immune defenses as a colonization barrier that pathogens must overcome to establish infection
    corecore