62 research outputs found

    Analysis of Interband, Intraband, and Plasmon Polariton Transitions in Silver Nanoparticle Films Via In Situ Real-Time Spectroscopic Ellipsometry

    Get PDF
    The dielectric function of Ag nanoparticle films, deduced from an analysis of in situ real-time spectroscopic ellipsometry (RTSE) measurements, is found to evolve with time during deposition in close consistency with the film structure, deduced in the same RTSE analysis. In the nucleation regime, the intraband dielectric function component is absent and plasmon polariton behavior dominates. Only at nuclei contact, does the intraband amplitude appear, increasing above zero. Both intraband and plasmon amplitudes coexist during surface smoothening associated with coalescence. The intraband relaxation time increases rapidly after surface smoothening is complete, also in consistency with the thin film structural evolution

    Study of a growth instability of γ-In[sub 2]Se[sub 3]

    Get PDF
    γ-In[sub 2]Se[sub 3] thin film are deposited for various substrate temperatures in the range of 523–673 K. This study shows that at 573 and 673 K the thin films are well crystallized with grains aligned along the c axis. Between these temperatures, a domain of instability appears where the γ-In[sub 2]Se[sub 3] thin films have a randomly orientation and the c-lattice parameter increases. The presence of the metastable phase κ-In[sub 2]Se[sub 3], during the growth, can explain the existence of this domain of instability. The insertion of Zn during the preparation process allows us to stabilize the phase κ at room temperature which confirms our hypothesis that the presence of κ-In[sub 2]Se[sub 3] perturbs the crystallization of γ-In[sub 2]Se[sub 3]. The increase of the c-lattice parameter can be explain by the fact that κ-In[sub 2]Se[sub 3] has a larger unit cell than γ-In[sub 2]Se[sub 3] or by a competition during the growth between the grains of both phases which could generate constraints along the c axis. During the cooling, the κ phase disappears in favor of the γ phase

    Antecedents and Evolution of the Green Supply Chain

    Get PDF
    Supply chains have been developing over time since the inception of commercial trade and barter. The purpose of this paper is to describe the emergence of the Green Supply Chain, the newest entry in supply chain evolution. As a foundation for this, historical perspectives of manufacturing chronology, along with supply chain modifications resulting from changing market conditions are discussed. Managerial implications are offered reflecting pathways towards sustainability.As production power shifted from manual operation to steam, technology became the main driver for supply chain development leading to a variety of types seen in industry today. Today\u27s supply chain types emerged due to increasing market complexity and competitive pressure. More recently, an additional driver occurred catalyzing the Green Supply Chain - the Environmental Movement. This chain is positioned as the next step in today\u27s supply chain evolution, balancing environmental, economic, and societal needs with customer growth

    Properties of Cu(In,Ga) Se2 Thin Films and Solar Cells Deposited by Hybrid Process

    Get PDF
    Cu(In,Ga)Se-2 solar cells were fabricated using a hybrid cosputtering/evaporation process, and efficiencies as high as 12.4% were achieved. The films were characterized by energy-dispersive X-ray spectroscopy, glancing incidence X-ray diffraction, scanning electron microscopy, auger electron spectroscopy, and transmittance and reflectance spectroscopy, and their properties were compared to the ones of films deposited by coevaporation. Even though the films were relatively similar, the ones deposited by the hybrid process tend to have smaller grains with a slightly preferred orientation along the (112) axis and a rougher surface. Both types of films have uniform composition through the depth. Characterization of these films by variable angle of incidence spectroscopic ellipsometry allowed for the calculation of the position of the critical points, via calculation of the second derivative of the dielectric function and fit with critical points parabolic band oscillators. The solar cells were then characterized by current-voltage and quantum efficiency measurements. An analysis of the diode parameters indicates that the cells are mostly limited by a low fill factor, associated mostly with a high diode quality factor (A - 1.8) and high series resistance (R-s similar to 1.1 Omega-cm(2))

    Growth Analysis of (Ag,Cu)InSe2 Thin Films Via Real Time Spectroscopic Ellipsometry

    Get PDF
    In situ and ex situ characterization methods have been applied to investigate the properties of (Ag,Cu)InSe2 (ACIS) thin films. Data acquired from real time spectroscopic ellipsometry (RTSE) experiments were analyzed to extract the evolution of the nucleating, bulk, and surface roughness layer thicknesses. The evolution of these layer thicknesses suggests a transition from Volmer-Weber to Stranski-Krastanov type behavior when Cu is replaced by Ag. The complex dielectric functions of ACIS at both deposition and room temperature as a function of film composition were also extracted from the RTSE data, enabling parameterization of the alloy optical properties

    Optical Detection of Melting Point Depression For Silver Nanoparticles Via In Situ Real Time Spectroscopic Ellipsometry

    Get PDF
    Silver nanoparticle films were deposited by sputtering at room temperature and were annealed while monitoring by real time spectroscopic ellipsometry (SE). The nanoparticle dielectric functions (0.75 eV-6.5 eV) obtained by SE were modeled using Lorentz and generalized oscillators for the nanoparticle plasmon polariton (NPP) and interband transitions, respectively. The nanoparticle melting point could be identified from variations in the oscillator parameters during annealing, and this identification was further confirmed after cooling through significant, irreversible changes in these parameters relative to the as-deposited film. The variation in melting point with physical thickness, and thus average nanoparticle diameter, as measured by SE enables calculation of the surface energy density

    Textured MoS 2 Thin Films Obtained on Tungsten: Electrical Properties of the W/MoS 2 Contact

    Get PDF
    Textured films of molybdenum disulfide have been obtained by solid state reaction between the constituents in thin films form when a (200) oriented tungsten sheet is used as substrate. The crystallites have their c axis perpendicular to the plane of the substrate. The annealing conditions are T=1073K and t=30 min. The films are stoichoimetric and p type. Such highly textured films are achieved without foreign atom addition (Ni, Co...). It appears, as shown by x-ray photoelectron spectroscopy, that a thin WS2 layer is present at the interface W/MoS2. The crystallization process is discussed by a van der Waals texturation (pseudoepitaxy) onto dangling bond sulfur terminated surfaces, these surfaces being ordered. After characterization of the W/MoS2 structure by x-ray diffraction and x-ray photoelectron spectroscopy, an upper electrode of tungsten was deposited by sputtering. The electrical properties of these W/MoS2/W structures have been investigated by analyzing the behavior of the current–voltage characteristics as a function of the measuring temperature. It is shown that an ohmic contact is obtained with a contact resistance smaller than the resistance of the MoS2 film

    Evolution of the Band Structure of β-In2 S3−3x O3x Buffer Layer With Its Oxygen Content

    Get PDF
    The evolution of the band structure of β-In2 S3−3x O3x (BISO) thin films grown by physical vapor deposition, with composition x, is investigated using x-ray photoelectron spectroscopy. It is shown that the energy difference between the valence-band level and the Fermi level remains nearly constant as the optical band gap of the films increases. As a consequence, the difference between the conduction band level and the Fermi level increases as much as the optical band gap of the films. The calculation of the electronic affinity [ ] of the BISO thin films shows that it decreases linearly from 4.65 to 3.85 eV when x varies from 0 to 0.14. This will facilitate fabrication of efficient Cu(InGa)Se2-based solar cells having different absorber layer band gap

    Optical Properties of Wide Band Gap Indium Sulphide Thin Films Obtained by Physical Vapor Deposition

    Get PDF
    Thin films of indium sulphide containing oxygen have been synthesized following a dry physical process. The constituents are deposited by thermal evaporation on glass substrates and then annealed under argon flow. Polycrystalline β-In2S3 containing oxygen thin films are obtained as soon as the temperature of annealing is between 623 and 723 K. In this paper, these β-In2S3 thin films have optically been studied. The optical band gap is direct. Its value is not dependent on the temperature of annealing. It is about 2.8 eV, which is higher than that of β-In2S3 single crystal. This high value is related to the presence of oxygen in the films. The extinction coefficient k and the refractive index n of the films have also been found independent of the annealing temperature. These optical properties make the films studied good candidates to be substituted to CdS in Cu(In,Ga)Se2 based solar cells

    In Situ and Ex Situ Studies of Molybdenum Thin Films Deposited by rf and dc Magnetron Sputtering as a Back Contact for CIGS Solar Cells

    Get PDF
    Molybdenum thin films were deposited by rf and dc magnetron sputtering and their properties analyzed with regards to their potential application as a back contact for CIGS solar cells. It is shown that both types of films tend to transition from tensile to compressive strain when the deposition pressure increases, while the conductivity and the grain size decreas. The nucleation of the films characterized by in situ and real time spectroscopic ellipsometry shows that both films follow a Volmer-Weber growth, with a higher surface roughness and lower deposition rate for the rf deposited films. The electronic relaxation time was then extracted as a function of bulk layer thickness for rf and dc films by fitting each dielectric function to a Drude free-electron model combined with a broad Lorentz oscillator. The values were fitted to a conical growth mode and demonstrated that the rf-deposited films have already smaller grains than the dc films when the bulk layer thickness is 30 nm
    • …
    corecore