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Molybdenum thin films were deposited by rf and dc magnetron sputtering and their properties analyzed with regards to their
potential application as a back contact for CIGS solar cells. It is shown that both types of films tend to transition from tensile to
compressive strain when the deposition pressure increases, while the conductivity and the grain size decreas. The nucleation of the
films characterized by in situ and real time spectroscopic ellipsometry shows that both films follow a Volmer-Weber growth, with
a higher surface roughness and lower deposition rate for the rf deposited films. The electronic relaxation time was then extracted
as a function of bulk layer thickness for rf and dc films by fitting each dielectric function to a Drude free-electron model combined
with a broad Lorentz oscillator. The values were fitted to a conical growth mode and demonstrated that the rf-deposited films have
already smaller grains than the dc films when the bulk layer thickness is 30 nm.

1. Introduction

With 20.3% efficiency, Cu(In,Ga)Se2 (CIGS) solar cells
are the most efficient polycrystalline thin films solar cells
today [1]. Part of the success of this technology comes
from the underlying molybdenum layer. It fulfills most re-
quirements for an effective back contact, notably chemical
and mechanical compatibility with the other deposition
processes, high conductivity, low contact resistance with the
CIGS layer, and commensurate thermal expansion coefficient
[2]. The deposition of a molybdenum film as a back contact
is not by itself, however, an assurance of a high efficiency
solar cell. The deposition process and parameters play a key
role in obtaining a layer with the appropriate properties.
Extensive research has been done on the deposition of
molybdenum thin films by direct-current (dc) sputtering [2–
6]. As the potential portfolio of CIGS applications expand,
different Mo film properties may be required to adapt to new
requirements. In this paper, therefore, we have described the
use of dc magnetron sputtering to deposit Mo thin films on
soda-lime glass and the comparison of such films with those

deposited by radio frequency (rf) magnetron sputtering. To
our knowledge, much less research has been performed on
Mo thin films deposited by this latter method [7–16]. To
assess the potential of this process, the physical, electrical,
and optical properties of rf and dc sputtered films were
studied as a function of argon pressure via ex situ and in situ
measurements.

2. Experimental Details

Molybdenum thin films were fabricated using rf and dc
magnetron sputtering onto soda-lime glass (SLG) substrates.
The deposition was carried out in high purity (99.999%)
argon ambient using a 2 inch diameter Mo sputtering target.
The argon flow was metered with a mass flow controller and
fixed at 10 sccm. The required argon pressure for sputtering
was achieved by throttling a high vacuum gate valve. The
thickness for all depositions was kept constant at 0.7 μm.
There was no intentional heating, but it should be noted
that the substrate temperature increased to 310 K during
the rf depositions. Uniform film thickness (±5% error)
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was achieved using a rotatable substrate holder fixed 6 cm
from the target. The argon pressure was varied between 4
and 20 mTorr while keeping a constant sputtering power of
100 W.

The structural, physical, electrical and optical properties
of the films were studied as a function of deposition argon
pressure. The influence of pressure on the crystallographic
properties and the mechanical properties of the films were
studied by X-ray diffraction (XRD) using a XPERT-PRO
diffractometer. The X-ray scans were performed using CuKα

radiation (λCuKα = 0.154 nm) in a scanning 2θ mode with
0.01◦ step size over a 2θ range of 20◦ to 90◦. The adhesion
of the films to the substrates was examined using an ad-
hesive tape test. The samples were mechanically scribed
to a rectangular shape, adhesive tape strips of the same
length were attached to the scribed films, and the tape
was stripped with approximately equal amounts of force.
Failure of the test is evidence by any film’s residue on
the tape. The film resistivity was calculated from the sheet
resistance by four-point probe and the film thickness by
DekTak3ST Surface Profiler. An atomic force microscope
(AFM) operated in noncontact AC mode (320 KHz tip) was
used for the topographical images of the films. The acquired
AFM images were used to determine the root-mean square
roughness (rms) of the films. Spectroscopic ellipsometry
measurements were performed in situ with a rotating-
compensator multichannel instrument in the energy range
of 0.75 to 6.5 eV. In ellipsometry, two quantities, ψ and
Δ, are measured in reflection; these represent, respectively,
the relative amplitude ratio and the phase difference shift
between the parallel and perpendicular field components
as measured with respect to the plane of incidence in the
reflection of polarized light. Pairs of (ψ,Δ) spectra were
collected within a time of 1.5 sec. Analyses of the spectra
involved numerical inversion and least-squares regression
algorithms. The angle of incidence was at 65◦ [17, 18].

3. Results and Discussion

3.1. Physical Properties. The influence of pressure and depo-
sition process on the crystallographic properties and the
mechanical properties of the films was studied by XRD. As
shown in Figure 1 (for p = 10 mTorr), the rf films tend to
have a lower degree of crystallization compared to the dc
films, as indicated by their broader and smaller peaks. It was
also found that the films deposited with lower pressure had a
higher degree of crystallinity as shown in Figure 2. This can
be explained by the fact that at lower deposition pressures
adatoms have impacted the surface with sufficient energy
to enhance their mobility, leading to increased diffusion of
atoms, atomic rearrangements, and atomic displacements,
which in turn are conducive to the growth of more stable,
larger crystalline grains. In the case of the rf films, since a
longer deposition is required to achieve the same thickness,
there may be an additional reduction of the mobility due
to the introduction of contaminant species such as oxygen,
which suppresses the diffusion of Mo adatoms and lead to
lattice defects.

In
te

n
si

ty
 (

a.
u

.) (110)

(110)

(110)

RF

DC

In
te

n
si

ty
 (

a.
u

.)

2θ (deg)

2θ (deg)

42414039

20 30 40 50 60 70 80 90

RF
DC

Figure 1: Typical XRD spectra of dc and rf magnetron sputtered
molybdenum thin films at 10 mTorr. (Inset: closeup of the (110)
peak).
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Figure 2: XRD pattern of the (110) peak for rf sputtered
molybdenum thin film as a function of argon pressure.

The observed (110) peak distortion can be directly
related to the strain in the films, which can be either
compressive or tensile. The Bragg law was used to calculate
the lattice spacing, d(110), and hence the lattice parameter a.
The strain of the film was then calculated using the formula:

Strain(%) = Δa

a
× 100, (1)

where Δa is the change in lattice parameter in the film
compared to a Mo sheet.

The change in strain with pressure for rf and dc films is
shown in Figure 3. In both cases the tensile strain dominates
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Figure 3: Strain variation in rf and dc films as a function of
pressure; (the curves are a guide to the eye).

over compressive strain. These strain versus pressure curves
can be split into low and high pressure domains. At low
pressure, the films are under either low tensile or compressive
strain. With increasing pressure, the tensile strain increases
until it reaches a maximum. For the rf films, the maximum is
about 0.24% at 8 mTorr, whereas for the dc films it is 0.33%
at 10 mTorr. At high pressure, the tensile strain gradually
decreases with further increasing pressure, leading toward
or reaching compressive strain once again at pressures
higher than 16 mTorr. The observed compressive strain at
low pressures can be explained by an effect called “atomic
peening” in which the high momentum sputtered ions
impinge onto the growing film surface [19, 20]. In striking
the surface with high momentum, the incident atoms
drive the near-surface atoms of the film closer together.
As a result, both incident and impacted atoms become
embedded deeper into the film surface thus generating the
film’s compressive stress and concomitantly a denser film
microstructure.

Conversely, the absence of energetic particle bombard-
ment at high pressure leads to a tensile stress and to a
more porous film microstructure. The compressive stress at
the higher pressures is most probably influenced by lattice
distortion due to one of the following: (i) incorporation of
foreign atoms into the film, (ii) reaction at grain boundaries
that produce a phase with a different molar volume, or (iii)
surface energy reduction at void surfaces. It is important to
notice that the nature and degree of the strain in the Mo films
can potentially alter the chemical activity of selenium during
the formation of the CIGS layer.

To assess the effect of strain, we measured the adhesion
of the films on the substrate by using an adhesive tape test
as described in Section 2. We found that all rf and dc films
passed the test except for the dc films prepared at 4 mTorr.
The failure of the test of the dc films at this pressure may be

due to high compressive strain in the films, as observed in
Figure 3.

The degree of orientation of the films along the (110)
direction, P(110), was calculated using:

P(110) = I(110)/I0(110) + I(220)/I0(220)
∑

hkl I(hkl)/I0(hkl)
, (2)

where I(hkl) is the measured intensity of the (hkl) peak
and I0(hkl) is the relative molybdenum powder diffraction
intensity. The rf films did not show any correlation of P(110)
with pressure (P(110) ∼ 0.8-0.9); however, P(110) for the
dc films was observed to decrease linearly from 0.96 to 0.87
for films of increasing pressure from 4 to 20 mTorr. The
fact that the crystallites have a strong preferential orientation
along the (110) plane can be explained by the lowest surface
potential energy for these planes.

The variation of the full width at half maximum
(FWHM) of the (110) peak with pressure for rf and dc films
was also measured. The average grain size of the films was
then determined using Scherrer formula [21]:

L = Kλ

β cos(θ)
, (3)

where L is the crystallite size, K is the Scherrer constant
(considered 0.90 for spherical particles), λ is the X-ray
wavelength, β is the FWHM of the peak, corrected for
instrument broadening (i.e., β2 = B2 − b2 where B =
experimental, b = instrumental), and θ is the Bragg angle.
For both type of films, a decrease in grain size with increasing
sputtering pressure was observed, followed by saturation
above 12 mTorr (Figure 4). For all pressures, the dc films
tend to have larger grain size than the rf films, which may
be related to the higher deposition rate of the dc films and
therefore the potential for lower foreign atom incorporation.

Film morphology measured by atomic force microscopy
(AFM) is shown Figures 5(a) and 5(b) for 4 mTorr. The
dc films show relatively smooth surface with uniform grain
distribution, whereas the rf films have a wider range of
grain sizes, a fibrous or columnar morphology and rougher
surfaces. The rms roughness of the dc and rf films were
found to increase from 2 nm to 6 nm and from 3 nm
to 9 nm, respectively, as pressure increased from 4 mTorr
to 20 mTorr. Furthermore, the films deposited at high
sputtering pressures showed dendritic-like morphologies,
and thus may incorporate high void volume fraction in
the films. With an increasing concentration of small void
structures with increasing pressure, the film volume may
expand slightly into the void regions, leading to tensile
stress. As the voids increase in size and their surfaces have a
dominating influence, high internal surface tension can then
force the film volume toward compression, as observed at the
highest pressures in Figure 3.

For optimal CIGS device performance, the desirable Mo
films display a fibrous morphology closer to that of the
rf sputtered films that allows diffusion pathways for the
migration of sodium (Na) atoms from the underlying soda
lime glass (SLG) substrate to the CIGS layer during its
deposition [5].
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Figure 4: Variation of average grain size of rf and dc films as a
function of pressure. The lines connect data points as guides to the
eye.

3.2. Electrical Properties. The resistivity of the rf and dc films
was found to increase with increasing pressure (Figure 6).
The rf films were found to be more resistive compared to
the dc films under otherwise identical deposition conditions.
The higher conductivity at low pressure is consistent with
a dense microstructure, whereas the low conductivity at
high pressure correlates well with porous microstructure
associated with tensile strain in the films. Low conductivity at
higher pressure is also consistent with decreasing grain size.

3.3. Optical Properties. During the deposition of the molyb-
denum films, real time in situ spectroscopic ellipsometry
(RTSE) was used over a wide spectral range (0.75–6.5 eV) in
order to characterize the growth process and the dielectric
functions. We chose 10 mTorr as a characteristic pressure,
where high tensile strain is observed for both rf and dc films.

Figure 7 shows the surface roughness and the bulk layer
thickness as a function of deposition time extracted from
RTSE as the film is deposited. During the initial stage of
growth, the incident Mo atoms nucleate forming separate
islands which is evidenced by a sharp increase in the surface
roughness thickness [22]. The Mo island size for the rf
films relative to the dc films is slightly greater, as measured
normal to the film surface at the onset of coalescence. Island
coalescence is characterized by a subsequent decrease in
surface roughness simultaneously with the onset of bulk layer
growth. A linear extrapolation of the bulk growth in the

uniform growth regime allows calculation of the deposition
rates and the final thickness. These thicknesses are found to
be in excellent agreement with ex situ surface profilometry
measurements. After complete coalescence of the islands,
the surface roughness thickness increases slightly before
saturating to a value of 3.9 nm (dc films) and 5 nm (rf films)
which correlates well with the ex situ AFM measurements
of 2.9 nm and 3.8 nm. Both rf and dc sputtered Mo thin
films follow a similar trend of surface roughness and bulk
layer thickness variation, but smoother film morphology
and higher deposition rates are obtained for the dc films
compared with the rf films.

Figures 8 and 9 show the complex dielectric function
components (ε1, ε2) of the Mo films at two bulk layer
thicknesses (3.3 nm and 100 nm), as determined by exact
inversion of spectra collected in real time during the growth
process. The bulk layer thickness used in the inversion
was determined through a global fit to spectra collected
over a narrow time range [23]. The surface roughness in
this comparison was neglected as it was relatively thin.
Clear differences in (ε1, ε2) are observed for rf and dc films
at the two thicknesses. At the beginning of the growth
(3.3 nm), the overall amplitude of ε2 for the dc films is larger,
indicating less void volume fraction in the dc films. This is
an indication of greater coalescence in the dc film at a given
thin-layer thickness. Furthermore as the thickness increases
from 3.3 nm to 100 nm, the amplitude of ε1 at the minimum
photon energy of 0.75 eV sharply decreases from 9 to −22
and from −6 to −54, for the rf and dc films respectively.
This is an indication of an increase in Drude free-electron
relaxation time (τ) most likely due to larger grain sizes and
reduced grain boundary scattering as the films increase in
thickness.

From the full set of dielectric function spectra, collected
every 1.5 s during the film growth, an electronic relaxation
time was extracted as a function of bulk layer thickness for
rf and dc films. This was done by fitting each dielectric
function to a Drude free-electron model combined with
a broad Lorentz oscillator [24]. The Drude model serves
to extract information from the low energy portion of the
spectra while the broad Lorentz oscillator serves to represent
all background contributions to the dielectric function from
higher energy. The Lorentz oscillator component of the
model is too broad and weak in the case of our Mo films, so
no information can be reliably extracted from it. The Drude
model on the other hand allows for a determination of the
broadening parameter, Γ, which is inversely proportional to
the free electron relaxation time, that is, τ ∼ �/Γ, where � is
Planck’s constant. The Drude free-electron equation is given
by:

ε(E) = ε∞ −
E2
p

E(E + iΓ)
, (4)

where Ep is the free-electron plasma energy and ε∞ is the
contribution to the dielectric function due to higher energy
oscillators, that is, the contribution from the interband
transitions (excluding the Lorentz oscillator used to obtain
a suitable fit). The resulting best-fit relaxation time (τ) as a
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Figure 5: Topographical images (5 μm × 5 μm) of dc (a) and rf (b) sputtered Mo deposited at 4 mTorr Ar pressure.
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Figure 6: Normalized resistivity as a function of pressure for Mo
thin films.

function of bulk layer thickness, db, is shown in Figure 10. It
shows that both rf and dc films have a similar trend for τ, that
is, initial increase with increase in db and saturation toward
the end, most likely when the grain grows with diameter
comparable to the bulk thickness. It is important to note that
the relaxation time for the rf films is systematically lower than
that for the dc films.

The particular functional electronic relaxation time
observed in Figure 10 can be attributed to grain boundary
scattering. To model this behavior, we use the model
proposed by Kasap [25], following (5):

τ−1 = τ−1
b +

3�νF[
2(1−�)λg

] , (5)

where τb is the relaxation time in the limit of a single
crystal, νF = 1.7 × 106 m/s is the Fermi velocity for Mo,
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Figure 7: Evolution of surface roughness (solid line) and bulk layer
thicknesses (dashed line) obtained by RTSE for Mo deposition using
dc and rf sputtering at 10 mTorr. The bulk layer becomes fully
opaque at large thickness values and, as a result, its thickness cannot
be determined.

λg is the electron mean free path, and � is the grain
boundary reflection coefficient, taken to be 0.5 as a first
approximation [15]. Reasonable fits to the data for τ in
Figure 10 are obtained if one assumes that the mean free path
λg is proportional to the grain radius and that the crystallite
evolution follows a conical growth mode in accordance the
relationship λg = xdb. Values of x = 0.33 (rf films) and
x = 0.45 (dc films) were extracted. This higher value of
the grain size for the dc films compared to the rf films is
consistent with the XRD results.

4. Conclusion

Molybdenum thin films were deposited onto soda-lime glass
substrates, using rf and dc magnetron sputtering. We have
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Figure 9: A comparison of the real parts of the dielectric function
for 100 nm thick Mo films deposited by rf and dc sputtering at
10 mTorr.

shown that critical sputtering parameters which control
the mechanisms and kinetics of film growth are not only
pressure and power but also the deposition mode (rf versus
dc). Both rf and dc deposited films show similar trends in
microstructural evolution, characterized by a Volmer-Weber
island growth-coalescence process followed by a continuous
increase of the grain size according to a cone-growth model.
The strain in the film also varied similarly for both films,
transitioning from compressive through tensile and back
to compressive again. Interestingly, this has little effect on
the adhesion of the films, which was good for all films
except those deposited by dc sputtering at low pressure. It
is important to note, however, that these films have not
been exposed to the CIGS deposition process at 550◦C
under Se atmosphere, and therefore could still delaminate
during solar cell fabrication. Another parameter to take into
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Figure 10: Relaxation time τ for free electrons in Mo as a function
of the bulk layer thickness for both dc and rf mode sputtering. Also
shown are the results of fits using a simple conical grain growth
model.

account, depending on the CIGS deposition process, is the
ability of the molybdenum to serve as a conduit for sodium
diffusion from the glass. Here, our experiments have shown
that the dc films have larger grains from the beginning to
the end of the growth, which may be less advantageous
for sodium diffusion through grain boundaries. Finally, the
lower conductivity of the rf films can be seen as a problem
since this may increase the solar cell series resistance. The
lower conductivity may also be an indicator of the presence
of foreign atoms (such as oxygen), which in turn may allow
for more flexibility of the film and less delamination when
deposition is performed on flexible substrates [26].
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