671 research outputs found

    New Trends and Future Opportunities in the Enzymatic Formation of C-C, C-N, and C-O bonds

    Get PDF
    Organic chemistry provides society with fundamental products we use daily. Concerns about the impact that the chemical industry has over the environment is propelling major changes in the way we manufacture chemicals. Biocatalysis offers an alternative to other synthetic approaches as it employs enzymes, Nature''s catalysts, to carry out chemical transformations. Enzymes are biodegradable, come from renewable sources, operate under mild reaction conditions, and display high selectivities in the processes they catalyse. As a highly multidisciplinary field, biocatalysis benefits from advances in different areas, and developments in the fields of molecular biology, bioinformatics, and chemical engineering have accelerated the extension of the range of available transformations (E. L. Bell et al., Nat. Rev. Meth. Prim. 2021, 1, 1–21). Recently, we surveyed advances in the expansion of the scope of biocatalysis via enzyme discovery and protein engineering (J. R. Marshall et al., Tetrahedron 2021, 82, 131926). Herein, we focus on novel enzymes currently available to the broad synthetic community for the construction of new C-C, C-N and C-O bonds, with the purpose of providing the non-specialist with new and alternative tools for chiral and sustainable chemical synthesis. © 2021 The Authors. ChemBioChem published by Wiley-VCH GmbH

    Reproducibility of quantitative indices of lung function and microstructure from 129Xe chemical shift saturation recovery (CSSR) MR spectroscopy

    Get PDF
    Purpose To evaluate the reproducibility of indices of lung microstructure and function derived from 129Xe chemical shift saturation recovery (CSSR) spectroscopy in healthy volunteers and patients with chronic obstructive pulmonary disease (COPD), and to study the sensitivity of CSSR-derived parameters to pulse sequence design and lung inflation level. Methods Preliminary data were collected from five volunteers on three occasions, using two implementations of the CSSR sequence. Separately, three volunteers each underwent CSSR at three different lung inflation levels. After analysis of these preliminary data, five COPD patients were scanned on three separate days, and nine age-matched volunteers were scanned three times on one day, to assess reproducibility. Results CSSR-derived alveolar septal thickness (ST) and surface-area-to-volume (S/V) ratio values decreased with lung inflation level (P < 0.001; P = 0.057, respectively). Intra-subject standard deviations of ST were lower than the previously measured differences between volunteers and subjects with interstitial lung disease. The mean coefficient of variation (CV) values of ST were 3.9 ± 1.9% and 6.0 ± 4.5% in volunteers and COPD patients, respectively, similar to CV values for whole-lung carbon monoxide diffusing capacity. The mean CV of S/V in volunteers and patients was 14.1 ± 8.0% and 18.0 ± 19.3%, respectively. Conclusion 129Xe CSSR presents a reproducible method for estimation of alveolar septal thickness

    Generalized Drinfeld-Sokolov Reductions and KdV Type Hierarchies

    Get PDF
    Generalized Drinfeld-Sokolov (DS) hierarchies are constructed through local reductions of Hamiltonian flows generated by monodromy invariants on the dual of a loop algebra. Following earlier work of De Groot et al, reductions based upon graded regular elements of arbitrary Heisenberg subalgebras are considered. We show that, in the case of the nontwisted loop algebra (gln)\ell(gl_n), graded regular elements exist only in those Heisenberg subalgebras which correspond either to the partitions of nn into the sum of equal numbers n=prn=pr or to equal numbers plus one n=pr+1n=pr+1. We prove that the reduction belonging to the grade 11 regular elements in the case n=prn=pr yields the p×pp\times p matrix version of the Gelfand-Dickey rr-KdV hierarchy, generalizing the scalar case p=1p=1 considered by DS. The methods of DS are utilized throughout the analysis, but formulating the reduction entirely within the Hamiltonian framework provided by the classical r-matrix approach leads to some simplifications even for p=1p=1.Comment: 43 page

    Extensions of the matrix Gelfand-Dickey hierarchy from generalized Drinfeld-Sokolov reduction

    Get PDF
    The p×pp\times p matrix version of the rr-KdV hierarchy has been recently treated as the reduced system arising in a Drinfeld-Sokolov type Hamiltonian symmetry reduction applied to a Poisson submanifold in the dual of the Lie algebra gl^prC[λ,λ1]\widehat{gl}_{pr}\otimes {\Complex}[\lambda, \lambda^{-1}]. Here a series of extensions of this matrix Gelfand-Dickey system is derived by means of a generalized Drinfeld-Sokolov reduction defined for the Lie algebra gl^pr+sC[λ,λ1]\widehat{gl}_{pr+s}\otimes {\Complex}[\lambda,\lambda^{-1}] using the natural embedding glprglpr+sgl_{pr}\subset gl_{pr+s} for ss any positive integer. The hierarchies obtained admit a description in terms of a p×pp\times p matrix pseudo-differential operator comprising an rr-KdV type positive part and a non-trivial negative part. This system has been investigated previously in the p=1p=1 case as a constrained KP system. In this paper the previous results are considerably extended and a systematic study is presented on the basis of the Drinfeld-Sokolov approach that has the advantage that it leads to local Poisson brackets and makes clear the conformal (W\cal W-algebra) structures related to the KdV type hierarchies. Discrete reductions and modified versions of the extended rr-KdV hierarchies are also discussed.Comment: 60 pages, plain TE

    Comparison of 3He and129Xe MRI for evaluation of lung microstructure and ventilation at 1.5T

    Get PDF
    BACKGROUND: To support translational lung MRI research with hyperpolarized129Xe gas, comprehensive evaluation of derived quantitative lung function measures against established measures from3He MRI is required. Few comparative studies have been performed to date, only at 3T, and multisession repeatability of129Xe functional metrics have not been reported. PURPOSE/HYPOTHESIS: To compare hyperpolarized129Xe and3He MRI-derived quantitative metrics of lung ventilation and microstructure, and their repeatability, at 1.5T. STUDY TYPE: Retrospective. POPULATION: Fourteen healthy nonsmokers (HN), five exsmokers (ES), five patients with chronic obstructive pulmonary disease (COPD), and 16 patients with nonsmall-cell lung cancer (NSCLC). FIELD STRENGTH/SEQUENCE: 1.5T. NSCLC, COPD patients and selected HN subjects underwent 3D balanced steady-state free-precession lung ventilation MRI using both3He and129Xe. Selected HN, all ES, and COPD patients underwent 2D multislice spoiled gradient-echo diffusion-weighted lung MRI using both hyperpolarized gas nuclei. ASSESSMENT: Ventilated volume percentages (VV%) and mean apparent diffusion coefficients (ADC) were derived from imaging. COPD patients performed the whole MR protocol in four separate scan sessions to assess repeatability. Same-day pulmonary function tests were performed. STATISTICAL TESTS: Intermetric correlations: Spearman's coefficient. Intergroup/internuclei differences: analysis of variance / Wilcoxon's signed rank. Repeatability: coefficient of variation (CV), intraclass correlation (ICC) coefficient. RESULTS: A significant positive correlation between3He and129Xe VV% was observed (r = 0.860, P < 0.001). VV% was larger for3He than129Xe (P = 0.001); average bias, 8.79%. A strong correlation between mean3He and129Xe ADC was obtained (r = 0.922, P < 0.001). MR parameters exhibited good correlations with pulmonary function tests. In COPD patients, mean CV of3He and129Xe VV% was 4.08% and 13.01%, respectively, with ICC coefficients of 0.541 (P = 0.061) and 0.458 (P = 0.095). Mean3He and129Xe ADC values were highly repeatable (mean CV: 2.98%, 2.77%, respectively; ICC: 0.995, P < 0.001; 0.936, P < 0.001). DATA CONCLUSION:129Xe lung MRI provides near-equivalent information to3He for quantitative lung ventilation and microstructural MRI at 1.5T. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage

    Upper critical field for underdoped high-T_c superconductors. Pseudogap and stripe--phase

    Full text link
    We investigate the upper critical field in a stripe--phase and in the presence of a phenomenological pseudogap. Our results indicate that the formation of stripes affects the Landau orbits and results in an enhancement of Hc2H_{c2}. On the other hand, phenomenologically introduced pseudogap leads to a reduction of the upper critical field. This effect is of particular importance when the magnitude of the gap is of the order of the superconducting transition temperature. We have found that a suppression of the upper critical field takes place also for the gap that originates from the charge--density waves.Comment: 7 pages, 5 figure

    Age, sex, and lung volume dependence of dissolved xenon‐129 MRI gas exchange metrics

    Get PDF
    Purpose To characterize the dependence of Xe-MRI gas transfer metrics upon age, sex, and lung volume in a group of healthy volunteers. Methods Sixty-five subjects with no history of chronic lung disease were assessed with 129Xe-MRI using a four-echo 3D radial spectroscopic imaging sequence and a dose of xenon titrated according to subject height that was inhaled from a lung volume of functional residual capacity (FRC). Imaging was repeated in 34 subjects at total lung capacity (TLC). Regional maps of the fractions of dissolved xenon in red blood cells (RBC), membrane (M), and airspace (Gas) were acquired at an isotropic resolution of 2 cm, from which global averages of the ratios RBC:M, RBC:Gas, and M:Gas were computed. Results Data from 26 males and 36 females with a median age of 43 y (range: 20–69 y) were of sufficient quality to analyze. Age (p = 0.0006) and sex (p < 0.0001) were significant predictors for RBC:M, and a linear regression showed higher values and steeper decline in males: RBC:M(Males) = −0.00362 × Age + 0.60 (p = 0.01, R2 = 0.25); RBC:M(Females) = −0.00170 × Age + 0.44 (p = 0.02, R2 = 0.15). Similarly, age and sex were significant predictors for RBC:Gas but not for M:Gas. RBC:M, M:Gas and RBC:Gas were significantly lower at TLC than at FRC (plus inhaled volume), with an average 9%, 30% and 35% decrease, respectively. Conclusion Expected age and sex dependence of pulmonary function concurs with 129Xe RBC:M imaging results, demonstrating that these variables must be considered when reporting Xe-MRI metrics. Xenon doses and breathing maneuvers should be controlled due to the strong dependence of Xe-MRI metrics upon lung volume

    Microscopic theory of weak pseudogap behavior in the underdoped cuprate superconductors I: General theory and quasiparticle properties

    Full text link
    We derive in detail a novel solution of the spin fermion model which is valid in the quasi-static limit pi T<<omega_sf, found in the intermediate (pseudoscaling) regime of the magnetic phase diagram of cuprate superconductors, and use it to obtain results for the temperature and doping dependence of the single particle spectral density, the electron-spin fluctuation vertex function, and the low frequency dynamical spin susceptibility. The resulting strong anisotropy of the spectral density and the vertex function lead to the qualitatively different behavior of_hot_ (around k=(pi,0)) and_cold_ (around k=(pi/2,pi/2)) quasiparticles seen in ARPES experiments. We find that the broad high energy features found in ARPES measurements of the spectral density of the underdoped cuprate superconductors are determined by strong antiferromagnetic (AF) correlations and incoherent precursor effects of an SDW state, with reduced renormalized effective coupling constant. The electron spin-fluctuation vertex function, i.e. the effective interaction of low energy quasiparticles and spin degrees of freedom, is found to be strongly anisotropic and enhanced for hot quasiparticles; the corresponding charge-fluctuation vertex is considerably diminished. We thus demonstrate that, once established, strong AF correlations act to reduce substantially the effective electron-phonon coupling constant in cuprate superconductors.Comment: REVTEX with EPS figures, uses multicol.sty, epsfig,sty, psfig.st
    corecore