694 research outputs found
New Trends and Future Opportunities in the Enzymatic Formation of C-C, C-N, and C-O bonds
Organic chemistry provides society with fundamental products we use daily. Concerns about the impact that the chemical industry has over the environment is propelling major changes in the way we manufacture chemicals. Biocatalysis offers an alternative to other synthetic approaches as it employs enzymes, Nature''s catalysts, to carry out chemical transformations. Enzymes are biodegradable, come from renewable sources, operate under mild reaction conditions, and display high selectivities in the processes they catalyse. As a highly multidisciplinary field, biocatalysis benefits from advances in different areas, and developments in the fields of molecular biology, bioinformatics, and chemical engineering have accelerated the extension of the range of available transformations (E. L. Bell et al., Nat. Rev. Meth. Prim. 2021, 1, 1–21). Recently, we surveyed advances in the expansion of the scope of biocatalysis via enzyme discovery and protein engineering (J. R. Marshall et al., Tetrahedron 2021, 82, 131926). Herein, we focus on novel enzymes currently available to the broad synthetic community for the construction of new C-C, C-N and C-O bonds, with the purpose of providing the non-specialist with new and alternative tools for chiral and sustainable chemical synthesis. © 2021 The Authors. ChemBioChem published by Wiley-VCH GmbH
Reproducibility of quantitative indices of lung function and microstructure from 129Xe chemical shift saturation recovery (CSSR) MR spectroscopy
Purpose
To evaluate the reproducibility of indices of lung microstructure and function derived from 129Xe chemical shift saturation recovery (CSSR) spectroscopy in healthy volunteers and patients with chronic obstructive pulmonary disease (COPD), and to study the sensitivity of CSSR-derived parameters to pulse sequence design and lung inflation level.
Methods
Preliminary data were collected from five volunteers on three occasions, using two implementations of the CSSR sequence. Separately, three volunteers each underwent CSSR at three different lung inflation levels. After analysis of these preliminary data, five COPD patients were scanned on three separate days, and nine age-matched volunteers were scanned three times on one day, to assess reproducibility.
Results
CSSR-derived alveolar septal thickness (ST) and surface-area-to-volume (S/V) ratio values decreased with lung inflation level (P < 0.001; P = 0.057, respectively). Intra-subject standard deviations of ST were lower than the previously measured differences between volunteers and subjects with interstitial lung disease. The mean coefficient of variation (CV) values of ST were 3.9 ± 1.9% and 6.0 ± 4.5% in volunteers and COPD patients, respectively, similar to CV values for whole-lung carbon monoxide diffusing capacity. The mean CV of S/V in volunteers and patients was 14.1 ± 8.0% and 18.0 ± 19.3%, respectively.
Conclusion
129Xe CSSR presents a reproducible method for estimation of alveolar septal thickness
Generalized Drinfeld-Sokolov Reductions and KdV Type Hierarchies
Generalized Drinfeld-Sokolov (DS) hierarchies are constructed through local
reductions of Hamiltonian flows generated by monodromy invariants on the dual
of a loop algebra. Following earlier work of De Groot et al, reductions based
upon graded regular elements of arbitrary Heisenberg subalgebras are
considered. We show that, in the case of the nontwisted loop algebra
, graded regular elements exist only in those Heisenberg
subalgebras which correspond either to the partitions of into the sum of
equal numbers or to equal numbers plus one . We prove that the
reduction belonging to the grade regular elements in the case yields
the matrix version of the Gelfand-Dickey -KdV hierarchy,
generalizing the scalar case considered by DS. The methods of DS are
utilized throughout the analysis, but formulating the reduction entirely within
the Hamiltonian framework provided by the classical r-matrix approach leads to
some simplifications even for .Comment: 43 page
A framework for modelling whole-lung and regional TLCO using hyperpolarised 129Xe lung MRI
Background: Pulmonary gas exchange is assessed by the transfer factor of the lungs (TL) for carbon monoxide (TLCO), and can also be measured with inhaled xenon-129 (129Xe) MRI. A model has been proposed to estimate TL from 129Xe MRI metrics, but this approach has not been fully validated and does not utilise the spatial information provided by 3D 129Xe MRI.
Methods: Three models for predicting TL from 129Xe MRI metrics were compared; (1) a previously-published physiology-based model, (2) multivariable linear regression and (3) random forest regression. Models were trained on data from 150 patients with asthma and/or chronic obstructive pulmonary disease. The random forest model was applied voxel-wise to 129Xe images to yield regional TL maps.
Results: Coefficients of the physiological model were found to differ from previously reported values. All models had good prediction accuracy with small mean absolute error (MAE); (1) 1.24±0.15 mmol·min−1·kPa−1, (2) 1.01±0.06 mmol·min−1·kPa−1, (3) 0.995±0.129 mmol·min−1·kPa−1. The random forest model performed well when applied to a validation group of post-COVID-19 patients and healthy volunteers (MAE=0.840 mmol·min−1·kPa−1), suggesting good generalisability. The feasibility of producing regional maps of predicted TL was demonstrated and the whole-lung sum of the TL maps agreed with measured TLCO (MAE=1.18 mmol·min−1·kPa−1).
Conclusion: The best prediction of TLCO from 129Xe MRI metrics was with a random forest regression framework. Applying this model on a voxel-wise level to create parametric TL maps provides a useful tool for regional visualisation and clinical interpretation of 129Xe gas exchange MRI
Extensions of the matrix Gelfand-Dickey hierarchy from generalized Drinfeld-Sokolov reduction
The matrix version of the -KdV hierarchy has been recently
treated as the reduced system arising in a Drinfeld-Sokolov type Hamiltonian
symmetry reduction applied to a Poisson submanifold in the dual of the Lie
algebra . Here a
series of extensions of this matrix Gelfand-Dickey system is derived by means
of a generalized Drinfeld-Sokolov reduction defined for the Lie algebra
using the natural
embedding for any positive integer. The
hierarchies obtained admit a description in terms of a matrix
pseudo-differential operator comprising an -KdV type positive part and a
non-trivial negative part. This system has been investigated previously in the
case as a constrained KP system. In this paper the previous results are
considerably extended and a systematic study is presented on the basis of the
Drinfeld-Sokolov approach that has the advantage that it leads to local Poisson
brackets and makes clear the conformal (-algebra) structures related to
the KdV type hierarchies. Discrete reductions and modified versions of the
extended -KdV hierarchies are also discussed.Comment: 60 pages, plain TE
Comparison of 3He and129Xe MRI for evaluation of lung microstructure and ventilation at 1.5T
BACKGROUND: To support translational lung MRI research with hyperpolarized129Xe gas, comprehensive evaluation of derived quantitative lung function measures against established measures from3He MRI is required. Few comparative studies have been performed to date, only at 3T, and multisession repeatability of129Xe functional metrics have not been reported. PURPOSE/HYPOTHESIS: To compare hyperpolarized129Xe and3He MRI-derived quantitative metrics of lung ventilation and microstructure, and their repeatability, at 1.5T. STUDY TYPE: Retrospective. POPULATION: Fourteen healthy nonsmokers (HN), five exsmokers (ES), five patients with chronic obstructive pulmonary disease (COPD), and 16 patients with nonsmall-cell lung cancer (NSCLC). FIELD STRENGTH/SEQUENCE: 1.5T. NSCLC, COPD patients and selected HN subjects underwent 3D balanced steady-state free-precession lung ventilation MRI using both3He and129Xe. Selected HN, all ES, and COPD patients underwent 2D multislice spoiled gradient-echo diffusion-weighted lung MRI using both hyperpolarized gas nuclei. ASSESSMENT: Ventilated volume percentages (VV%) and mean apparent diffusion coefficients (ADC) were derived from imaging. COPD patients performed the whole MR protocol in four separate scan sessions to assess repeatability. Same-day pulmonary function tests were performed. STATISTICAL TESTS: Intermetric correlations: Spearman's coefficient. Intergroup/internuclei differences: analysis of variance / Wilcoxon's signed rank. Repeatability: coefficient of variation (CV), intraclass correlation (ICC) coefficient. RESULTS: A significant positive correlation between3He and129Xe VV% was observed (r = 0.860, P < 0.001). VV% was larger for3He than129Xe (P = 0.001); average bias, 8.79%. A strong correlation between mean3He and129Xe ADC was obtained (r = 0.922, P < 0.001). MR parameters exhibited good correlations with pulmonary function tests. In COPD patients, mean CV of3He and129Xe VV% was 4.08% and 13.01%, respectively, with ICC coefficients of 0.541 (P = 0.061) and 0.458 (P = 0.095). Mean3He and129Xe ADC values were highly repeatable (mean CV: 2.98%, 2.77%, respectively; ICC: 0.995, P < 0.001; 0.936, P < 0.001). DATA CONCLUSION:129Xe lung MRI provides near-equivalent information to3He for quantitative lung ventilation and microstructural MRI at 1.5T. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage
Upper critical field for underdoped high-T_c superconductors. Pseudogap and stripe--phase
We investigate the upper critical field in a stripe--phase and in the
presence of a phenomenological pseudogap. Our results indicate that the
formation of stripes affects the Landau orbits and results in an enhancement of
. On the other hand, phenomenologically introduced pseudogap leads to a
reduction of the upper critical field. This effect is of particular importance
when the magnitude of the gap is of the order of the superconducting transition
temperature. We have found that a suppression of the upper critical field takes
place also for the gap that originates from the charge--density waves.Comment: 7 pages, 5 figure
Age, sex, and lung volume dependence of dissolved xenon‐129 MRI gas exchange metrics
Purpose
To characterize the dependence of Xe-MRI gas transfer metrics upon age, sex, and lung volume in a group of healthy volunteers.
Methods
Sixty-five subjects with no history of chronic lung disease were assessed with 129Xe-MRI using a four-echo 3D radial spectroscopic imaging sequence and a dose of xenon titrated according to subject height that was inhaled from a lung volume of functional residual capacity (FRC). Imaging was repeated in 34 subjects at total lung capacity (TLC). Regional maps of the fractions of dissolved xenon in red blood cells (RBC), membrane (M), and airspace (Gas) were acquired at an isotropic resolution of 2 cm, from which global averages of the ratios RBC:M, RBC:Gas, and M:Gas were computed.
Results
Data from 26 males and 36 females with a median age of 43 y (range: 20–69 y) were of sufficient quality to analyze. Age (p = 0.0006) and sex (p < 0.0001) were significant predictors for RBC:M, and a linear regression showed higher values and steeper decline in males: RBC:M(Males) = −0.00362 × Age + 0.60 (p = 0.01, R2 = 0.25); RBC:M(Females) = −0.00170 × Age + 0.44 (p = 0.02, R2 = 0.15). Similarly, age and sex were significant predictors for RBC:Gas but not for M:Gas. RBC:M, M:Gas and RBC:Gas were significantly lower at TLC than at FRC (plus inhaled volume), with an average 9%, 30% and 35% decrease, respectively.
Conclusion
Expected age and sex dependence of pulmonary function concurs with 129Xe RBC:M imaging results, demonstrating that these variables must be considered when reporting Xe-MRI metrics. Xenon doses and breathing maneuvers should be controlled due to the strong dependence of Xe-MRI metrics upon lung volume
- …