16 research outputs found

    LentivĂ­rus de pequenos ruminantes (CAEV e Maedi-Visna): revisĂŁo e perspectivas

    Full text link

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    THE EFFECT OF PRIMARY ALPHA ON THE BETA DECOMPOSITION OF ZIRCONIUM-URANIUM- OXYGEN ALLOYS

    No full text
    The effect of primary alpha present during the solutiontreating cycle on the incubation period for the decomposition of beta and on the resultant structure has been determined for Zr-base alloys containing from 7 to 15 wt.% U and from 0.094 to 0.29 wt.% 0. Prior-existing alpha decreased the time at which precipitation of Widmanstgtten alpha started and increased the rate of precipitation. The microstructure of transformed alloys was correlated with tentative isothermal-transformation diagrams. (auth

    Infectious Diseases

    No full text
    corecore