2 research outputs found

    The dark energy spectrometer - A potential multi-fiber instrument for the Blanco 4-meter telescope

    Get PDF
    We describe the preliminary design of the Dark Energy Spectrometer (DESpec), a fiber-fed spectroscopic instrument concept for the Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory (CTIO). DESpec would take advantage of the infrastructure recently deployed for the Dark Energy Camera (DECam). DESpec would be mounted in the new DECam prime focus cage, would be interchangeable with DECam, would share the DECam optical corrector, and would feature a focal plane with ∼4000 robotically positioned optical fibers feeding multiple high-throughput spectrometers. The instrument would have a field of view of 3.8 square degrees, a wavelength range of approximately 500<λ<1000 nm, and a spectral resolution of R∼3000. DESpec would provide a powerful spectroscopic follow-up system for sources in the Southern hemisphere discovered by the Dark Energy Survey and LSST

    Localization and broadband follow-up of the gravitational-wave transient GW 150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams
    corecore