57 research outputs found
Nucleic Acids Res
The HIV-1 viral infectivity factor (Vif) is required for productive infection of non-permissive cells, including most natural HIV-1 targets, where it counteracts the antiviral activities of the cellular cytosine deaminases APOBEC-3G (A3G) and A3F. Vif is a multimeric protein and the conserved proline-rich domain (161)PPLP(164) regulating Vif oligomerization is crucial for its function and viral infectivity. Here, we expressed and purified wild-type Vif and a mutant protein in which alanines were substituted for the proline residues of the (161)PPLP(164) domain. Using dynamic light scattering, circular dichroism and fluorescence spectroscopy, we established the impact of these mutations on Vif oligomerization, secondary structure content and nucleic acids binding properties. In vitro, wild-type Vif formed oligomers of five to nine proteins, while Vif AALA formed dimers and/or trimers. Up to 40% of the unbound wild-type Vif protein appeared to be unfolded, but binding to the HIV-1 TAR apical loop promoted formation of beta-sheets. Interestingly, alanine substitutions did not significantly affect the secondary structure of Vif, but they diminished its binding affinity and specificity for nucleic acids. Dynamic light scattering showed that Vif oligomerization, and interaction with folding-promoting nucleic acids, favor formation of high molecular mass complexes. These properties could be important for Vif functions involving RNAs
HIV-1 replication and the cellular eukaryotic translation apparatus
Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1) uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication
Nucleic Acids Res
The genome of influenza A viruses (IAV) is split into eight viral RNAs (vRNAs) that are encapsidated as viral ribonucleoproteins. The existence of a segment-specific packaging mechanism is well established, but the molecular basis of this mechanism remains to be deciphered. Selective packaging could be mediated by direct interaction between the vRNA packaging regions, but such interactions have never been demonstrated in virions. Recently, we showed that the eight vRNAs of a human H3N2 IAV form a single interaction network in vitro that involves regions of the vRNAs known to contain packaging signals in the case of H1N1 IAV strains. Here, we show that the eight vRNAs of an avian H5N2 IAV also form a single network of interactions in vitro, but, interestingly, the interactions and the regions of the vRNAs they involve differ from those described for the human H3N2 virus. We identified the vRNA sequences involved in five of these interactions at the nucleotide level, and in two cases, we validated the existence of the interaction using compensatory mutations in the interacting sequences. Electron tomography also revealed significant differences in the interactions taking place between viral ribonucleoproteins in H5N2 and H3N2 virions, despite their canonical '7 + 1' arrangement
Biochemical and Functional Characterization of Mouse Mammary Tumor Virus Full-Length Pr77Gag Expressed in Prokaryotic and Eukaryotic Cells
The mouse mammary tumor virus (MMTV) Pr77Gag polypeptide is an essential retroviral structural protein without which infectious viral particles cannot be formed. This process requires specific recognition and packaging of dimerized genomic RNA (gRNA) by Gag during virus assembly. Most of the previous work on retroviral assembly has used either the nucleocapsid portion of Gag, or other truncated Gag derivatives—not the natural substrate for virus assembly. In order to understand the molecular mechanism of MMTV gRNA packaging process, we expressed and purified full-length recombinant Pr77Gag-His6-tag fusion protein from soluble fractions of bacterial cultures. We show that the purified Pr77Gag-His6-tag protein retained the ability to assemble virus-like particles (VLPs) in vitro with morphologically similar immature intracellular particles. The recombinant proteins (with and without His6-tag) could both be expressed in prokaryotic and eukaryotic cells and had the ability to form VLPs in vivo. Most importantly, the recombinant Pr77Gag-His6-tag fusion proteins capable of making VLPs in eukaryotic cells were competent for packaging sub-genomic MMTV RNAs. The successful expression and purification of a biologically active, full-length MMTV Pr77Gag should lay down the foundation towards performing RNA–protein interaction(s), especially for structure-function studies and towards understanding molecular intricacies during MMTV gRNA packaging and assembly processes
Diversity of Prophage DNA Regions of Streptococcus agalactiae Clonal Lineages from Adults and Neonates with Invasive Infectious Disease
The phylogenetic position and prophage DNA content of the genomes of 142 S. agalactiae (group-B streptococcus, GBS) isolates responsible for bacteremia and meningitis in adults and neonates were studied and compared. The distribution of the invasive isolates between the various serotypes, sequence types (STs) and clonal complexes (CCs) differed significantly between adult and neonatal isolates. Use of the neighbor-net algorithm with the PHI test revealed evidence for recombination in the population studied (PHI, P = 2.01×10−6), and the recombination-mutation ratio (R/M) was 6∶7. Nevertheless, the estimated R/M ratio differed between CCs. Analysis of the prophage DNA regions of the genomes of the isolates assigned 90% of the isolates to five major prophage DNA groups: A to E. The mean number of prophage DNA fragments amplified per isolate varied from 2.6 for the isolates of prophage DNA group E to 4.0 for the isolates of prophage DNA group C. The isolates from adults and neonates with invasive diseases were distributed differently between the various prophage DNA groups (P<0.00001). Group C prophage DNA fragments were found in 52% of adult invasive isolates, whereas 74% of neonatal invasive isolates had prophage DNA fragments of groups A and B. Differences in prophage DNA content were also found between serotypes, STs and CCs (P<0.00001). All the ST-1 and CC1 isolates, mostly of serotype V, belonged to the prophage DNA group C, whereas 84% of the ST-17 and CC17 isolates, all of serotype III, belonged to prophage DNA groups A and B. These data indicate that the transduction mechanisms, i.e., gene transfer from one bacterium to another by a bacteriophage, underlying genetic recombination in S. agalactiae species, are specific to each intraspecies lineage and population of strains responsible for invasive diseases in adults and neonates
Labeling of Multiple HIV-1 Proteins with the Biarsenical-Tetracysteine System
Due to its small size and versatility, the biarsenical-tetracysteine system is an attractive way to label viral proteins for live cell imaging. This study describes the genetic labeling of the human immunodeficiency virus type 1 (HIV-1) structural proteins (matrix, capsid and nucleocapsid), enzymes (protease, reverse transcriptase, RNAse H and integrase) and envelope glycoprotein 120 with a tetracysteine tag in the context of a full-length virus. We measure the impact of these modifications on the natural virus infection and, most importantly, present the first infectious HIV-1 construct containing a fluorescently-labeled nucleocapsid protein. Furthermore, due to the high background levels normally associated with the labeling of tetracysteine-tagged proteins we have also optimized a metabolic labeling system that produces infectious virus containing the natural envelope glycoproteins and specifically labeled tetracysteine-tagged proteins that can easily be detected after virus infection of T-lymphocytes. This approach can be adapted to other viral systems for the visualization of the interplay between virus and host cell during infection
- …