924 research outputs found
Hybrid solutions to the feature interaction problem
In this paper we assume a competitive marketplace where the features are developed by different enterprises, which cannot or will not exchange information. We present a classification of feature interaction in this setting and introduce an on-line technique which serves as a basis for the two novel <i>hybrid</i> approaches presented. The approaches are hybrid as they are neither strictly off-line nor on-line, but combine aspects of both. The two approaches address different kinds of feature interactions, and thus are complimentary. Together they provide a complete solution by addressing interaction detection and resolution. We illustrate the techniques within the communication networks domain
Sebomic identification of sex- and ethnicity-specific variations in residual skin surface components (RSSC) for bio-monitoring or forensic applications
Background: “Residual skin surface components” (RSSC) is the collective term used for the superficial layer of sebum, residue of sweat, small quantities of intercellular lipids and components of natural moisturising factor present on the skin surface. Potential applications of RSSC include use as a sampling matrix for identifying biomarkers of disease, environmental exposure monitoring, and forensics (retrospective identification of exposure to toxic chemicals). However, it is essential to first define the composition of “normal” RSSC. Therefore, the aim of the current study was to characterise RSSC to determine commonalities and differences in RSSC composition in relation to sex and ethnicity. Methods: Samples of RSSC were acquired from volunteers using a previously validated method and analysed by high-pressure liquid chromatography–atmospheric pressure chemical ionisation–mass spectrometry (HPLC-APCI-MS). The resulting data underwent sebomic analysis. Results: The composition and abundance of RSSC components varied according to sex and ethnicity. The normalised abundance of free fatty acids, wax esters, diglycerides and triglycerides was significantly higher in males than females. Ethnicity-specific differences were observed in free fatty acids and a diglyceride. Conclusions: The HPLC-APCI-MS method developed in this study was successfully used to analyse the normal composition of RSSC. Compositional differences in the RSSC can be attributed to sex and ethnicity and may reflect underlying factors such as diet, hormonal levels and enzyme expression.Peer reviewedFinal Published versio
Skin flora: Differences Between People Affected by Albinism and Those with Normally Pigmented Skin in Northern Tanzania - Cross Sectional Study.
Skin flora varies from one site of the body to another. Individual's health, age and gender determine the type and the density of skin flora. A 1 cm² of the skin on the sternum was rubbed with sterile cotton swab socked in 0.9% normal saline and plated on blood agar. This was cultured at 35 °C. The bacteria were identified by culturing on MacConkey agar, coagulase test, catalase test and gram staining. Swabs were obtained from 66 individuals affected by albinism and 31 individuals with normal skin pigmentation. Those with normal skin were either relatives or staying with the individuals affected by albinism who were recruited for the study. The mean age of the 97 recruited individuals was 30.6 (SD ± 14.9) years. The mean of the colony forming units was 1580.5 per cm2. Those affected by albinism had a significantly higher mean colony forming units (1680 CFU per cm²) as compared with 453.5 CFU per cm² in those with normally pigmented skin (p = 0.023). The skin type and the severity of sun- damaged skin was significantly associated with a higher number of colony forming units (p = 0.038). Individuals affected by albinism have a higher number of colony forming units which is associated with sun- damaged skin
Enforcement and compliance: critical practices for community rehabilitation companies and the new NPS?
Efforts to secure compliance have always been a core element of probation practice,although compliance has been constructed in diverse ways and promoted through different means throughout its history. This article takes a brief historical perspective and reviews recent research on enforcement practices and developing understandings of compliance. These guide a critical discussion of the practices that might develop as responsibilities for enforcement are divided between the new National Probation Service (NPS) and Community Rehabilitation Companies (CRCs) under the Transforming Rehabilitation agenda, highlighting inevitable tensions and challenges, and anticipating how inter-agency practices might shape the ongoing construction
of compliance. Charging more than one agency with responsibilities in relation to enforcement is tricky and creates risks in terms of legitimacy, credibility and justice. On the whole, future prospects seem difficult, but not hopeless and, in particular, there are examples of positive practices in probation and youth justice for
the NPS and CRCs to draw upon as they develop their inter-agency structures and processes. Elsewhere, initiatives in problem-solving courts, focused, for example, on drug users, may also give indicators of constructive ways forwar
Cellular Radiosensitivity: How much better do we understand it?
Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies.
Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation
The ratio of initial/residual DNA damage predicts intrinsic radiosensitivity in seven cervix carcinoma cell lines.
The single-cell gel electrophoresis (comet) assay was used to measure radiation-produced DNA double-strand breaks (dsbs) in a series of seven cervical tumour cell lines (ME180, HT3, C33A, C41, SiHa, MS751 and CaSki). The proportion of DNA dsbs was measured immediately after radiation treatment (initial damage) and 16 h later after incubation at 37 degrees C (residual damage). Linear dose-response curves were seen for initial (slopes 0.23-0.66) and residual (slopes 0.16-0.87) DNA dsbs. Neither of the slopes of the linear regression analysis on the initial and on the residual DNA dsbs dose-response curves (range 0-80 Gy) correlated with SF2 (surviving fraction at 2 Gy) measured after high- (HDR) or low-dose-rate (LDR) irradiation. An association was evident between SF2 after HDR and LDR irradiation and the ratio of the absolute level of initial and residual damage after a single dose of 60 Gy. However, a significant correlation was found between HDR (r= -0.78, P = 0.04) and LDR (r = -0.86, P = 0.03) SF2 values and the ratio of the slopes of the initial and residual DNA dsbs dose-response curves (range 0.47-0.99), representing the fraction of DNA damage remaining. These results indicate that the neutral comet assay can be used to predict radiosensitivity of cervical tumour cell lines by assessing the ratio of initial and residual DNA dsbs
Reflections on learning and enhancing communication skills through community engagement: a student perspective
An individual-based profitability spectrum for understanding interactions between predators and their prey
There is confusion in the animal behaviour literature over the use of the terms ‘toxicity’ and ‘unpalatability’, which are commonly used interchangeably when describing the function of chemical compounds in prey, although these terms describe very different functions. Toxic chemicals cause fitness-reducing harm, whereas unpalatability provides aversive taste but no reduction in fitness. Furthermore, chemical defences are only one aspect of prey profitability. We argue that if predators are maximizing fitness, all prey can be described in terms of their costs and benefits to predators across all currencies, giving each prey item a positive or negative position on a ‘profitability spectrum’. Adaptively foraging predators should be selected to eat only prey with a positive profitability. The context of each predator–prey encounter also alters the profitability of the prey. Given that profitability is a function of the current state of both the predator and the prey individuals, we explain why it should be considered to be an attribute of a particular encounter, in contrast to its present usage as an attribute of a prey species. This individual-centred perspective requires researchers to investigate, through both theoretical models and empirical studies, the complex conditions in which predators and prey meet in real life
Prospective Study of Infection, Colonization and Carriage of Methicillin-Resistant Staphylococcus Aureus in an Outbreak Affecting 990 Patients
In the three years between November 1989 and October 1992, an outbreak of methicillin-resistantStaphylococcus aureus (MRSA) affected 990 patients at a university hospital. The distribution of patients with carriage, colonization or infection was investigated prospectively. Nosocomial acquisition was confirmed in at least 928 patients, 525 of whom were identified from clinical specimens as being infected (n=418) or colonized (n=107) by MRSA. An additional 403 patients were identified from screening specimens, of whom 58 subsequently became infected and 18 colonized. Screening of the nose, throat and perineum detected 98 % of all carriers. Of the 580 infections in 476 patients, surgical wound, urinary tract and skin infections accounted for 58 % of the infections. Of the 476 infected patients, death was attributable to MRSA infection in 13 %. Colonization with MRSA was found in 127 patients and 42 % of 165 colonized sites were the skin. Auto-infection from nasal carriage or cross-infection, probably via staff hands, seemed to be the most common mode of acquisition of MRSA infections
A comet assay of DNA damage and repair in K562 cells after photodynamic therapy using haematoporphyrin derivative, methylene blue and meso-tetrahydroxyphenylchlorin.
Single-cell electrophoresis (comet assay) has been used to evaluate DNA damage and repair in the human myeloid leukaemia cell line K562 after low-dose (predominantly sub-lethal) treatments of hyperthermia and photodynamic therapy (PDT). Three different photosensitizers were examined: haematoporphyrin derivative (HpD), methylene blue (MB) and meso-tetrahydroxyphenylchlorin (mTHPC). None of the drugs in the absence of light, nor in light alone, resulted in detectable DNA damage. However, a significant amount of DNA damage was detected immediately after treatment with haematoporphyrin derivative or methylene blue PDT compared with drug-only or light-only treatments; no residual level of DNA damage was evident for either drug following a 4-h post-treatment incubation at 37 degrees C. No significant DNA damage was detected after meso-tetrahydroxyphenylchlorin PDT or hyperthermia either immediately or 4 h after treatment. We conclude that the alkaline comet assay can be applied as an effective screening assay for DNA damage induced by a range of laser therapies
- …
