371 research outputs found

    Spin dependent photoelectron tunnelling from GaAs into magnetic Cobalt

    Full text link
    The spin dependence of the photoelectron tunnel current from free standing GaAs films into out-of- plane magnetized Cobalt films is demonstrated. The measured spin asymmetry (A) resulting from a change in light helicity, reaches +/- 6% around zero applied tunnel bias and drops to +/- 2% at a bias of -1.6 V applied to the GaAs. This decrease is a result of the drop in the photoelectron spin polarization that results from a reduction in the GaAs surface recombination velocity. The sign of A changes with that of the Cobalt magnetization direction. In contrast, on a (nonmagnetic) Gold film A ~ 0%

    Material enabled thermography

    Get PDF

    NOONAN’S SYNDROME

    Get PDF
    The clinical case an adult patient with rare genetically heterogeneous disorder combine with congenital heart diseases and multiple stigmas of disembryogenesis, currently presenting mostly with signs of pulmonary hypertension have been reviewed. Patient is presented with definitive Noonan’s syndrome according scoring system of Van Der Burgt (has 2 major criteria). The data of the laboratory and instrumental diagnostic methods, clinical diagnosis, selection of the optimized treatment and modification of the habit of life are given

    Genetic cartography of longevity in humans and mice: Current landscape and horizons.

    Get PDF
    Aging is a complex and highly variable process. Heritability of longevity among humans and other species is low, and this finding has given rise to the idea that it may be futile to search for DNA variants that modulate aging. We argue that the problem in mapping longevity genes is mainly one of low power and the genetic and environmental complexity of aging. In this review we highlight progress made in mapping genes and molecular networks associated with longevity, paying special attention to work in mice and humans. We summarize 40years of linkage studies using murine cohorts and 15years of studies in human populations that have exploited candidate gene and genome-wide association methods. A small but growing number of gene variants contribute to known longevity mechanisms, but a much larger set have unknown functions. We outline these and other challenges and suggest some possible solutions, including more intense collaboration between research communities that use model organisms and human cohorts. Once hundreds of gene variants have been linked to differences in longevity in mammals, it will become feasible to systematically explore gene-by-environmental interactions, dissect mechanisms with more assurance, and evaluate the roles of epistasis and epigenetics in aging. A deeper understanding of complex networks-genetic, cellular, physiological, and social-should position us well to improve healthspan

    Topology optimization of nonlinear periodically microstructured materials for tailored homogenized constitutive properties

    Full text link
    A topology optimization method is presented for the design of periodic microstructured materials with prescribed homogenized nonlinear constitutive properties over finite strain ranges. The mechanical model assumes linear elastic isotropic materials, geometric nonlinearity at finite strain, and a quasi-static response. The optimization problem is solved by a nonlinear programming method and the sensitivities computed via the adjoint method. Two-dimensional structures identified using this optimization method are additively manufactured and their uniaxial tensile strain response compared with the numerically predicted behavior. The optimization approach herein enables the design and development of lattice-like materials with prescribed nonlinear effective properties, for use in myriad potential applications, ranging from stress wave and vibration mitigation to soft robotics

    Dependence of the kinetic energy absorption capacity of bistable mechanical metamaterials on impactor mass and velocity

    Full text link
    Using an alternative mechanism to dissipation or scattering, bistable structures and mechanical metamaterials have shown promise for mitigating the detrimental effects of impact by reversibly locking energy into strained material. Herein, we extend prior works on impact absorption via bistable metamaterials to computationally explore the dependence of kinetic energy transmission on the velocity and mass of the impactor, with strain rates exceeding 10210^2 s−1^{-1}. We observe a large dependence on both impactor parameters, ranging from significantly better to worse performance than a comparative linear material. We then correlate the variability in performance to solitary wave formation in the system and give analytical estimates of idealized energy absorption capacity under dynamic loading. In addition, we find a significant dependence on damping accompanied by a qualitative difference in solitary wave propagation within the system. The complex dynamics revealed in this study offer potential future guidance for the application of bistable metamaterials to applications including human and engineered system shock and impact protection devices

    Extraction, characterization and incorporation of Hypericum scruglii extract in ad hoc formulated phospholipid vesicles designed for the treatment of skin diseases connected with oxidative stress

    Get PDF
    An extract of Hypericum scruglii, an endangered endemic plant of Sardinia (Italy), was prepared and characterized. It was loaded in special phospholipid vesicles, glycerosomes, which were modified by adding maltodextrin (glucidex) and a polymer (gelatin or hyaluronan). The corresponding liposomes were also prepared and used as reference. The vesicles disclosed suitable physicochemical features for skin delivery. Indeed, their mean diameter ranged from 120 to 160 nm, they were homogeneously dispersed (polydispersity index 0.30), and their zeta potential was highly negative (-45 mV). The vesicle dispersions maintained unchanged characteristics during 60 days of storage, were highly biocompatible, and were able to protect keratinocytes against damages due to oxidative stress induced by treating them with hydrogen peroxide. Vesicles were also capable of promoting cell proliferation and migration in vitro by means of a scratch wound assay. The results confirmed the fruitful delivery of the extract of H. scruglii in glycerosomes modified with glucidex and gelatin and their promising ability for skin protection and treatment
    • …
    corecore