13 research outputs found

    Electric dipole moments and the search for new physics

    Get PDF
    Static electric dipole moments of nondegenerate systems probe mass scales for physics beyond the Standard Model well beyond those reached directly at high energy colliders. Discrimination between different physics models, however, requires complementary searches in atomic-molecular-and-optical, nuclear and particle physics. In this report, we discuss the current status and prospects in the near future for a compelling suite of such experiments, along with developments needed in the encompassing theoretical framework.Comment: Contribution to Snowmass 2021; updated with community edits and endorsement

    Hunting Dark Matter Axions with CAST

    No full text
    The CAST experiment at CERN has been looking for the hypothetical particles of Dark Matter called axions for about 22 years. After setting world-class limits on the axion-photon coupling strength for solar axions as a helioscope, it has been converted into a haloscope looking for Dark Matter axions. By following the Sikivie haloscope principle, microwave cavities have been inserted in the two bores of the CAST dipole magnet. The CAST-CAPP sub-detector is making use of a novel technique called phase-matching which maximizes the detection sensitivity by combining coherently four cavities which allows for future large-scale upgrades. At the same time, each cavity is equipped with a fast frequency tuning mechanism which opens up the possibility of being sensitive also to axion streams and mini-clusters in addition to standard galactic halo axions. Even though axions remain to be discovered, CAST has excluded a significant amount of the available parameter space and has paved the way for future axion searches with next-generation experiments

    Σήματα αόρατης ύλης από ηλιακές - επίγειες παρατηρήσεις

    No full text
    The composition of the dark universe although hypothesised, remains one of the biggest mysteries in modern physics. On smaller scales, there are various solar puzzling phenomena which known physics cannot explain like the coronal heating problem, the origin of sunspots, the trigger mechanism of solar flares, but also the open issue since the 1850's on the planetary impact of the active Sun. Interestingly, the 11-year solar cycle remains one of the oldest open questions in solar physics. At the same time, several terrestrial observations in the dynamic Earth's atmosphere such as the ionospheric ionisation around December are unexpected within conventional physics. Following this work, the suggested common solution of all these conventionally unexplained phenomena is based on an external triggering caused by low-speed streaming constituents from the dark sector, being gravitationally focused or deflected by the Sun and the orbiting planets. For this to happen, streams of invisible matter are assumed to exist which should interact with large cross-sections with baryonic matter. Existing favourable candidates from the dark sector include AntiQuark Nuggets, magnetic monopoles and dark photons. Evidence in support of this hypothesis and on the existence of one or more streams or clusters has been provided based on a coincidence analysis of long-term astrophysical and planetary datasets. Of note, the planetary correlation is the novel key signature. By projecting the time of appearance of the measured observables on the orbital position of the various planets including the Moon, a striking clustering shows up. This statistically significant pronounced activity at certain planetary heliocentric longitudes points to preferred directions in the flow of the assumed streams, like probably one from the Galactic Centre. Notably, even stronger planetary correlations occur when the gravitational effect of two or more planets is combined. Some of the results are also supported by Fourier analyses. Additionally, the derived significant narrow periodicity of 27.32 days on most of the observables, which overlaps with the Moon's sidereal Month, strengthens the claim of a significant exo-solar influence. Finally, a redefined strategy for direct Dark Matter searches focused on streaming Dark Matter is proposed. This novel procedure has been successfully implemented in the CAST-CAPP detector at CERN searching for Dark Matter axions.Η σύσταση του σκοτεινού σύμπαντος, παρόλες τις υποθέσεις παραμένει ένα από τα μεγαλύτερα μυστήρια της μοντέρνας φυσικής. Σε μικρότερες κλίμακες, υπάρχουν διάφορα ηλιακά φαινόμενα τα οποία η γνωστή φυσική δεν μπορεί να εξηγήσει, όπως το πρόβλημα της θέρμανσης του ηλιακού στέμματος, η προέλευση των ηλιακών κηλίδων, ο μηχανισμός πυροδότησης των ηλιακών εκλάμψεων, αλλά και το ανοιχτό ζήτημα από τη δεκαετία του 1850 σχετικά με τις πλανητικές επιπτώσεις του ενεργού Ήλιου. Σημειωτέον, ο 11-ετής ηλιακός κύκλος παραμένει ένα από τα παλαιότερα ανοικτά ερωτήματα της ηλιακής φυσικής. Ταυτόχρονα, αρκετές επίγειες παρατηρήσεις σχετικά με τη δυναμική γήινη ατμόσφαιρα, όπως ο ιονοσφαιρικός ιονισμός τον Δεκέμβριο, είναι απροσδόκητες στο πλαίσιο της συμβατικής φυσικής. Με βάση την συγκεκριμένη εργασία, η προτεινόμενη κοινή λύση για όλα αυτά τα συμβατικώς ανεξήγητα φαινόμενα βασίζεται σε μια εξωτερική πυροδότηση που προκαλείται από χαμηλής ταχύτητας συστατικά του σκοτεινού τομέα, τα οποία εστιάζονται ή εκτρέπονται βαρυτικά από τον Ήλιο και τους πλανήτες. Για να συμβεί αυτό, πρέπει να υπάρχουν ρεύματα αόρατης ύλης τα οποία θα πρέπει να αλληλεπιδρούν ισχυρά με την βαρυονική ύλη. Μερικοί ταιριαστοί υποψήφιοι από τον σκοτεινό τομέα περιλαμβάνουν τα Antiquark Nuggets, τα μαγνητικά μονόπολα και τα σκοτεινά φωτόνια. Για την υποστήριξη αυτής της υπόθεσης καθώς και για την ύπαρξη ενός ή περισσότερων ρευμάτων παρέχονται αποδείξεις βασισμένες στην ανάλυση συμπτώσεων μακροχρόνιων αστροφυσικών και πλανητικών βάσεων δεδομένων. Σημειώνεται πως η πλανητική συσχέτιση αποτελεί την βασική υπογραφή. Προβάλλοντας τον χρόνο εμφάνισης των παρατηρησιακών δεδομένων στην τροχιακή θέση των διαφόρων πλανητών, συμπεριλαμβανομένης της Σελήνης, εμφανίζεται μια εντυπωσιακή ομαδοποίηση. Αυτή η στατιστικώς σημαντική έντονη δραστηριότητα σε ορισμένα πλανητικά ηλιοκεντρικά μήκη υποδεικνύει προτιμώμενες κατευθύνσεις στη ροή των υποτιθέμενων ρευμάτων, όπως πιθανώς από το Γαλαξιακό μας κέντρο. Αξίζει να σημειωθεί ότι ακόμη ισχυρότερες πλανητικές συσχετίσεις εμφανίζονται όταν συνδυάζεται η βαρυτική επίδραση δύο ή περισσότερων πλανητών. Μερικά από τα αποτελέσματα υποστηρίζονται επίσης από αναλύσεις Fourier. Επιπροσθέτως, η προκύπτουσα στατιστικώς σημαντική περιοδικότητα 27.32 ημερών στις περισσότερες βάσεις δεδομένων, η οποία ταυτίζεται με τον αστρικό μήνα της Σελήνης, ενισχύει τον ισχυρισμό μιας σημαντικής εξω-ηλιακής επιρροής. Τέλος, προτείνεται μια νέα στρατηγική για άμεσες αναζητήσεις Σκοτεινής Ύλης που εστιάζουν σε σκοτεινές ροές. Αυτή η νέα διαδικασία εφαρμόστηκε με επιτυχία στον ανιχνευτή CAST-CAPP στο CERN ο οποίος ψάχνει για αξιόνια Σκοτεινής Ύλης

    10th Patras Workshop on Axions, WIMPs and WISPs

    No full text

    On the Origin of the Rhythmic Sun’s Radius Variation

    No full text
    Based on helioseismological measurements (1996–2017), the entire Sun shrinks during solar maximum and regrows during the next solar minimum by about a few km (~10−5 effect). Here, we observe, for the first time, that the solar radius variation resembles a 225-day relationship that coincides with Venus’ orbital period. We show that a remote link between planet Venus and Sun’s size must be at work. However, within known realms of physics, this is unexpected. Therefore, we can only speculate about its cause. Notably, the driving idea behind this investigation was some generic as-yet-invisible matter from the dark Universe. In fact, the 11-year solar cycle shows planetary relationships for a number of other observables as well. It has been proposed that the cause must be due to some generic streaming invisible massive matter (IMM). As when a low-speed stream is aligned toward the Sun with an intervening planet, the IMM influx increases temporally due to planetary gravitational focusing, assisted eventually with the free fall of incident slow IMM. A case-specific simulation for Venus’ impact supports the tentative scenario based on this investigation’s driving idea. Importantly, Saturn, combined with the innermost planets Mercury or Venus, unambiguously confirms an underlying planetary correlation with the Sun’s size. The impact of the suspected IMM accumulates with time, slowly triggering the underlying process(es); the associated energy change is massive even though it extends from months to several years. This study shows that the Sun’s size response is as short as half the orbital period of Mercury (44 days) or Venus (112 days). Then, the solar system is the target and the antenna of still unidentified external impact, assuming tentatively from the dark sector. If the generic IMM also has some preferential incidence direction, future long-lasting observations of the Sun’s shape might provide an asymmetry that could be utilized to identify the not isotropic influx of the assumed IMM

    Signals for invisible matter from solar - terrestrial observations

    No full text
    Gravitational lensing of invisible streaming matter towards the Sun or the Earth could be the explanation of puzzling solar/terrestrial phenomena. We have analyzed solar flares, EUV emission and also the global ionization content of the Earth atmosphere. Assuming that this invisible matter has some form of interaction with normal matter and that there exist preferred directions in its flow, then one would expect an enhanced activity at certain planetary longitudes, which is also observed. The broad velocity spectrum of the assumed constituents makes it difficult at this stage to identify the origin of the stream(s) or the nature of its constituents

    Signals for invisible matter from solar - terrestrial observations

    No full text
    Gravitational lensing of invisible streaming matter towards the Sun or the Earth could be the explanation of puzzling solar/terrestrial phenomena. We have analyzed solar flares, EUV emission and also the global ionization content of the Earth atmosphere. Assuming that this invisible matter has some form of interaction with normal matter and that there exist preferred directions in its flow, then one would expect an enhanced activity at certain planetary longitudes, which is also observed. The broad velocity spectrum of the assumed constituents makes it difficult at this stage to identify the origin of the stream(s) or the nature of its constituents

    Signals for invisible matter from solar - terrestrial observations

    No full text
    Gravitational lensing of invisible streaming matter towards the Sun or the Earth could be the explanation of puzzling solar/terrestrial phenomena. We have analyzed solar flares, EUV emission and also the global ionization content of the Earth atmosphere. Assuming that this invisible matter has some form of interaction with normal matter and that there exist preferred directions in its flow, then one would expect an enhanced activity at certain planetary longitudes, which is also observed. The broad velocity spectrum of the assumed constituents makes it difficult at this stage to identify the origin of the stream(s) or the nature of its constituents
    corecore