2,859 research outputs found

    Quantum pumping in a ballistic graphene bilayer

    Full text link
    We investigate quantum pumping of massless Dirac fermions in an ideal (impurity free) double layer of graphene. The pumped current is generated by adiabatic variation of two gate voltages in the contact regions to a weakly doped double graphene sheet. At the Dirac point and for a wide bilayer with width W much larger then length L, we find that the pumped current scales linearly with the interlayer coupling length l_{perp} for L/l_{perp} << 1, is maximal for L/l_{perp} ~ 1, and crosses over to a log(L/l_{perp})/(L/l_{perp})-dependence for L/l_{perp} >> 1. We compare our results with the behavior of the conductance in the same system and discuss their experimental feasibility.Comment: 6 pages, 3 figure

    Automatic computation of quantum-mechanical bound states and wavefunctions

    Get PDF
    We discuss the automatic solution of the multichannel Schr\"odinger equation. The proposed approach is based on the use of a CP method for which the step size is not restricted by the oscillations in the solution. Moreover, this CP method turns out to form a natural scheme for the integration of the Riccati differential equation which arises when introducing the (inverse) logarithmic derivative. A new Pr\"ufer type mechanism which derives all the required information from the propagation of the inverse of the log-derivative, is introduced. It improves and refines the eigenvalue shooting process and implies that the user may specify the required eigenvalue by its index

    On CP, LP and other piecewise perturbation methods for the numerical solution of the Schrödinger equation

    Get PDF
    The piecewise perturbation methods (PPM) have proven to be very efficient for the numerical solution of the linear time-independent Schrödinger equation. The underlying idea is to replace the potential function piecewisely by simpler approximations and then to solve the approximating problem. The accuracy is improved by adding some perturbation corrections. Two types of approximating potentials were considered in the literature, that is piecewise constant and piecewise linear functions, giving rise to the so-called CP methods (CPM) and LP methods (LPM). Piecewise polynomials of higher degree have not been used since the approximating problem is not easy to integrate analytically. As suggested by Ixaru (Comput Phys Commun 177:897–907, 2007), this problem can be circumvented using another perturbative approach to construct an expression for the solution of the approximating problem. In this paper, we show that there is, however, no need to consider PPM based on higher-order polynomials, since these methods are equivalent to the CPM. Also, LPM is equivalent to CPM, although it was sometimes suggested in the literature that an LP method is more suited for problems with strongly varying potentials. We advocate that CP schemes can (and should) be used in all cases, since it forms the most straightforward way of devising PPM and there is no advantage in considering other piecewise polynomial perturbation methods

    Exponentially-fitted methods and their stability functions

    Get PDF
    Is it possible to determine the stability function of an exponentially-fitted Runge-Kutta method, without actually constructing the method itself? This question was answered in a recent paper and examples were given for one-stage methods. In this paper we summarize the results and we focus on two-stage methods

    A comparison of RESTART implementations

    Get PDF
    The RESTART method is a widely applicable simulation technique for the estimation of rare event probabilities. The method is based on the idea to restart the simulation in certain system states, in order to generate more occurrences of the rare event. One of the main questions for any RESTART implementation is how and when to restart the simulation, in order to achieve the most accurate results for a fixed simulation effort. We investigate and compare, both theoretically and empirically, different implementations of the RESTART method. We find that the original RESTART implementation, in which each path is split into a fixed number of copies, may not be the most efficient one. It is generally better to fix the total simulation effort for each stage of the simulation. Furthermore, given this effort, the best strategy is to restart an equal number of times from each state, rather than to restart each time from a randomly chosen stat

    High-order convergent deferred correction schemes based on parameterized Runge-Kutta-Nyström methods for second-order boundary value problems

    Get PDF
    AbstractIterated deferred correction is a widely used approach to the numerical solution of first-order systems of nonlinear two-point boundary value problems. Normally, the orders of accuracy of the various methods used in a deferred correction scheme differ by 2 and, as a direct result, each time deferred correction is used the order of the overall scheme is increased by a maximum of 2. In [16], however, it has been shown that there exist schemes based on parameterized Runge–Kutta methods, which allow a higher increase of the overall order. A first example of such a high-order convergent scheme which allows an increase of 4 orders per deferred correction was based on two mono-implicit Runge–Kutta methods. In the present paper, we will investigate the possibility for high-order convergence of schemes for the numerical solution of second-order nonlinear two-point boundary value problems not containing the first derivative. Two examples of such high-order convergent schemes, based on parameterized Runge–Kutta-Nyström methods of orders 4 and 8, are analysed and discussed

    Public safety and cognitive radio

    Get PDF
    This book gives comprehensive and balanced coverage of the principles of cognitive radio communications, cognitive networks, and details of their implementation, including the latest developments in the standards and spectrum policy. Case studies, end-of-chapter questions, and descriptions of various platforms and test beds, together with sample code, give hands-on knowledge of how cognitive radio systems can be implemented in practice. Extensive treatment is given to several standards, including IEEE 802.22 for TV White Spaces and IEEE SCC41

    Three-stage two-parameter symplectic, symmetric exponentially-fitted Runge-Kutta methods of Gauss type

    Get PDF
    We construct an exponentially-fitted variant of the well-known three stage Runge-Kutta method of Gauss-type. The new method is symmetric and symplectic by construction and it contains two parameters, which can be tuned to the problem at hand. Some numerical experiments are given
    • …
    corecore