17 research outputs found

    "Analysis of dynamic responses and instabilities in rotating machinery\u201d

    Get PDF
    The first task of the present research is to characterize both experimentally and numerically journal bearings with low radial clearances for rotors in small-scale applications (e.g., micro Gas Turbines); their diameter is in the order of ten millimetres, leading to very small dimensional clearances when the typical relative ones (order of 1/1000) are employed; investigating this particular class of journal bearings under static and dynamic loading conditions represents something unexplored. To this goal, a suitable test rig was designed, and the performance of its bearings were investigated under steady load. For the sake of comparison, numerical simulations of the lubrication were also performed by means of a simplified model. The original test rig adopted is a commercial Rotor Kit (RK), but substantial modifications were carried out in order to allow significant measurements. Indeed, the relative radial clearance of RK4 RK bearings is about 2/100, while it is around 1/1000 in industrial bearings. Therefore, the same original RK bearings are employed in this new test rig, but a new shaft was designed to reduce their original clearance. The new custom shaft allows to study bearing behaviour for different clearances, since it is equipped with interchangeable journals. Experimental data obtained by this test rig are then compared with further results of more sophisticated simulations. They were carried out by means of an in-house developed finite element (FEM) code, suitable for ThermoElasto-HydroDynamic (TEHD) analysis of journal bearings both in static and dynamic conditions. In this work, bearing static performances are studied to assess the reliability of the experimental journal location predictions by comparing them with the ones coming from already validated numerical codes. Such comparisons are presented both for large and small clearance bearings of original and modified RK, respectively. Good agreement is found only for the modified RK equipped with small clearance bearings (relative radial clearance 8/1000), as expected. In comparison with two-dimensional lubrication analysis, three-dimensional simulation improves prediction of journal location and correlation with experimental results. The second main task of the present work is the development and the implementation of a suitable analytical model to correctly capture rolling bearing radial stiffness, particularly nearby the critical speeds of the investigated rotor-bearings system. In this work, such bearing non-linear stiffness lumped parameter model is firstly validated on the commercial RK and then it is applied to both air bladeless turbines (or Tesla turbines) and to an innovative microturbine, in order to assess their global rotodynamic behavior when they are mounted on ball bearings. In order to properly investigate all the issues related to critical speeds and stiffness, an adequate number of experimental tests was performed by exploiting an experimental air Tesla turbine prototype located at TPG experimental facility of the University of Genoa. The correlation between measured flexural critical speeds and their numerical predictions is markedly conditioned by the correct identification of ball bearings dynamic characteristics; in particular, bearings stiffness effect may play a significant role in terms of rotor-bearings system natural frequencies and therefore it must be properly assessed. Indeed, Tesla turbine rotor FE model previously employed for numerical modal analysis relies on rigid bearings assumption and therefore it does not account for bearings stiffness overall contribution, which may become crucial in case of \u201chard mounting\u201d of rotor-bearings systems. Subsequently, high-speed air Tesla rotor is investigated by means of an enhanced FE model for numerical modal analysis within Ansys\uae environment, where ball bearings are modelled as non-linear springs whose stiffness is expressed according to the analytic model implemented in Matlab\uae. Two different numerical FE models are devised for microturbine rotor modelling which respectively rely on beam elements and on three-dimensional solid elements for mechanical system spatial discretization. The obtained results in terms of rotor-bearings system modal analysis exhibit an improvement in experimental-numerical results correlation by relying on such ball bearing stiffness model; moreover, beam-based FE model critical speeds predictions are coherent with experimental evidence and with respect to solid elements model it is characterized by lower computational time and it is more easily interpretable. Thus, such experimentally validated numerical model represents a reliable and easily adaptable tool for highspeed rotating machinery critical speeds prediction in practical industrial application cases. Finally In this work, several signal processing techniques performed on vibro-acoustic signals acquired from a T100 Turbec microturbine (which is furnished with a centrifugal compressor) are illustrated. Research activity goal focuses on the investigation different kinds of system response starting from non-intrusive probes signals like accelerometers and microphones; this is made by means of techniques such as HOSA and Wavelet Transform, developed in Matlab\uae environment, for early detection of the onset of unstable phenomena in centrifugal compressors. These new and different methods have been applied to the same set of data to get sufficiently independent information useful to synergistically improve knowledge in the diagnostic system. Data were acquired by means of an experimental facility based on a T100 turbine developed by the Thermochemical Power Group (TPG) at the University of Genoa. Sampling rate and sensor placement were carefully taken into account, basing both on the physical phenomena to be observed and on the sensor dynamic characteristics. In this context, it is meant to study microphones and accelerometers signals not from an isolated centrifugal turbomachine installed in a dedicated line, but from a whole compressor placed in a mGT system for energy generation. Indeed, the investigated machine is not operating in standalone mode, but its working point and angular velocity depend on the coupling with several elements. In particular, compressor working point and then its vibro-acoustic signals are expected to convey vibration and sound contributions coming from all the plant components; thus, they are more representative of machine realistic behavior in the energy system

    Energy management and load profile optimisation of 10 kWh BESS integrated into a Smart Polygeneration Grid subnetwork

    Get PDF
    Smart Polygeneration Grids integrate different prime movers, such as traditional generators, renewable energy sources and energy storage systems to locally supply electrical and thermal power to achieve high conversion efficiencies and increase self-consumption. Integrating different energy systems poses some challenges on the plant Energy Management Systems (EMS), which must accommodate different operational requirements while following the electrical and thermal loads. Battery Energy Storage Systems (BESSs) can provide additional flexibility to the system. This paper intends to evaluate the impact of integrating a Ni-Zn-based BESS into an existing cogeneration plant through a dedicated sensitivity analysis over the operative characteristics of the BESS itself (maximum power and capacity). The IES LAB of the Savona’s Campus already contains different energy systems: a cogenerative micro gas turbine, a heat-pump, solar thermal panels and two thermal energy storage systems that provide electricity and thermal power to the Smart Polygeneration Grid of the Campus. A new developed energy scheduler accommodates the integration of the new battery and meets the electrical and thermal demands. The aim is to demonstrate that integrating the BESS provides additional benefits in the system management and can reduce fuel usage and OPEX

    Early surge detection on a turbocharger used to pressurize a SOFC plant emulator

    Get PDF
    High-speed centrifugal compressors are commonly exploited to pressurize fuel cell-based hybrid energy systems. In such complex plants, because of significant interposed volumes due to fuel cells, dynamic compressor response can induce severe vibrations caused by low mass flow rates instability. In particular, surge strongly limits centrifugal compressors stable working region when moving towards low mass flow rate due to a change in system operating point. Consequently, a complete system identification is performed in order to adequately characterize compressor dynamic response for early surge detection. To this goal, a tailored experimental activity has been carried out at the Thermochemical Power Group of the University of Genoa on a vaneless diffuser compressor turbocharger used for the pressurization of an innovative solid oxide fuel cell (SOFC) emulator plant. Several post-processing methods have been performed on system vibro-acoustic responses to better predict and classify compressor status as stable or unstable. The obtained results provide original diagnostic insights for monitoring systems capable of preventing surge and other low mass flow unstable phenomena, such as rotating stall cells inception. Low mass flow rate fluid-dynamic instabilities prevention can extend compressor operating range, performance, and reliability to allow better integration with other plant components

    Early surge detection in a mGT plant coupled with large volumes

    Get PDF
    The present work features post-processing methods applied to vibro-acoustic data acquired from a T100 micro gas turbine (mGT) plant coupled with different volume interposed plenums. Such experimental campaign was conducted by relying on a test bench developed at the University of Genoa for hybrid systems emulation. Nonetheless, the obtained results can be generalized to all advanced cycles in which a mGT is coupled with further external elements which cause an increase of plant overall volume size. Since in this case a 100 kW mGT was employed, the interposed vessel was placed between heat recovery system outlet and combustor inlet, such as in common cases relevant to small size plants. Post-processing techniques carried out on acoustic and vibrational measurements can make available innovative diagnostic tools and predictive solutions by relying on appropriate instability indicators which are defined basing only on microphone and accelerometer experimental data. The main results presented in this work are relevant to rotating stall and incipient surge proper identification. Such investigation has been performed to increase the knowledge about such dangerous compressor working conditions; indeed, energy systems characterized by significant interposed volumes coupled with centrifugal compressors feature issues relevant to structural damaging due to surge and rotating stall

    Hematopoietic Stem Cell Transplantation for Systemic Lupus Erythematosus

    Get PDF
    Two streams of research are at the origin of the utilization of hematopoietic stem cell transplantation (HSCT) for severe autoimmune diseases (SADs). The allogeneic approach came from experimental studies on lupus mice, besides clinical results in coincidental diseases. The autologous procedure was encouraged by researches on experimental neurological and rheumatic disorders. At present the number of allogeneic HSCT performed for human SADs can be estimated to not over 100 patients, and the results are not greatly encouraging, considering the significant transplant-related mortality (TRM) and the occasional development of a new autoimmune disorder and/or relapses notwithstanding full donor chimerism. Autologous HSCT for refractory SLE has become a major target. Severe cases have been salvaged, TRM is low and diminishing, and prolonged clinical remissions are obtainable. Two types of immune resetting have been established, “re-education” and regulatory T cell (Tregs) normalization. Allogeneic HSCT for SLE seems best indicated for patients with disease complicated by an oncohematologic malignancy. Autologous HSCT is a powerful salvage therapy for otherwise intractable SLE. The duration of remission in uncertain, but a favorable response to previously inactive treatments is a generally constant feature. The comparison with new biological agents, or the combination of both, are to be ascertained

    Development of a new test rig for the analysis of hydrodynamic bearings for rotors of microGT

    Get PDF
    The aim of the present work is to design a test rig suited to investigate the dynamic interaction between rotor and hydrodynamic journal bearings in micro gas turbines (microGT), i.e. with reference to small bearings (diameter in the order of ten millimeters). Particularly, the device is capable of measuring the journal location. Therefore, the journal motion due to rotor vibrations can be displayed, in order to assess performance as well as stiffness and damping of the bearings. The new test rig is based on Bently Nevada Rotor Kit (RK), but substantial modifications are carried out. Indeed, the relative radial clearance of the original RK bearings is about 2/100, while it is in the order of 1/1000 in industrial bearings. Therefore, the same RK bearings are employed in the new test rig, but a new shaft has been designed in order to reduce the original clearance. The new shaft enables us to study the bearing behaviour for different clearances, as it is equipped with interchangeable journals. The experimental data yielded by the new test rig are compared with numerical results. These are obtained by means of a suitable finite element (FEM) code developed by our research group. It allows the Thermo Elasto-HydroDynamic (TEHD) analysis of the bearing in static and dynamic conditions. In the present paper, bearing static performances are analysed in order to assess the reliability of the journal location predictions by comparing numerical and experimental results. Such comparisons are presented for both large and small clearance bearings of original and modified RK, respectively. Good agreement is found only for the modified RK equipped with small clearance bearings (relative radial clearance equal to 8/1000). Nevertheless, rotor alignment is quite difficult with small clearance bearings and a completely new test rig is designed for future experiments

    Energy management and load profile optimisation of 10 kWh BESS integrated into a Smart Polygeneration Grid subnetwork

    Get PDF
    Smart Polygeneration Grids integrate different prime movers, such as traditional generators, renewable energy sources and energy storage systems to locally supply electrical and thermal power to achieve high conversion efficiencies and increase self-consumption. Integrating different energy systems poses some challenges on the plant Energy Management Systems (EMS), which must accommodate different operational requirements while following the electrical and thermal loads. Battery Energy Storage Systems (BESSs) can provide additional flexibility to the system. This paper intends to evaluate the impact of integrating a Ni-Zn-based BESS into an existing cogeneration plant through a dedicated sensitivity analysis over the operative characteristics of the BESS itself (maximum power and capacity). The IES LAB of the Savona's Campus already contains different energy systems: A cogenerative micro gas turbine, a heat-pump, solar thermal panels and two thermal energy storage systems that provide electricity and thermal power to the Smart Polygeneration Grid of the Campus. A new developed energy scheduler accommodates the integration of the new battery and meets the electrical and thermal demands. The aim is to demonstrate that integrating the BESS provides additional benefits in the system management and can reduce fuel usage and OPEX

    Hysteresis and torsional-lateral vibration coupling in a complex shaft line supported by hydrodyanamic journal bearings

    No full text
    In some rotating machinery for specific industrial applications the driving as well as resistance torques or the inertias reduced to the rotation axis may be nonstationary, thus affecting system dynamics. Under such operating conditions, in some peculiar cases torsional response and rotational motion irregularity may influence system lateral vibrations. The present paper shows how such coupling phenomena may become significant in particular conditions, where the occurrence of fluid–structure interactions causes a reduction in stability threshold of hydrodynamic journal bearings and torsional energy yields a hysteresis behaviour in system synchronous lateral response. A hypothesis based on Hopf bifurcation theory (HBT) is formulated in order to justify how and under which operating conditions such coupling phenomenon can develop. In order to validate such hypothesis, an experimental campaign is performed on a real-size shaft line including a TG rotor for heavy-duty power plants mounted on hydrodynamic bearings. The detected rotor-bearings system lateral operating response is found to become more complex in presence of a pulsating driving torque inducing significant angular speed oscillation as well as a dynamic perturbation, which causes strong coupling from torsional to lateral vibrations. Such coupling entity has been experimentally found to be dependent from excitation frequency with respect to revolution one. Particularly, localized hysteresis and jump-up phenomena are detected in trends of fundamental order contents measured during run-up and run-down tests when such torsional response is present. Consequently, a hydrodynamic bearing numerical model is built that can solve Reynolds equation in unsteady conditions in order to quantify journal lateral vibrations amplitude in presence of both an angular speed oscillation and a dynamic perturbation, both characterized by well-defined amplitude and characteristic frequency. The proposed approach, validated by means of both suitable measurements and numerical simulations, can justify the existence of such coupling phenomena. The detected anomalous response characterized by localized hysteresis is ascribable to journals unstable behaviour onset within hydrodynamic bearings due to operating angular speed irregularity related to an induced torsional vibration

    Incipient Surge Detection in Large Volume Energy Systems Based on Wigner\u2013Ville Distribution Evaluated on Vibration Signals

    No full text
    Compressor response investigation in nearly unstable operating conditions, like rotating stall and incipient surge, is a challenging topic nowadays in the turbomachinery research field. Indeed, turbines connected with large-size volumes are affected by critical issues related to surge prevention, particularly during transient operations. Advanced signalprocessing operations conducted on vibrational responses provide an insight into possible diagnostic and predictive solutions which can be derived from accelerometer measurements. Indeed, vibrational investigation is largely employed in rotating-machine diagnostics together with time-frequency analysis such as smoothed pseudo-Wigner Ville (SPWVD) time-frequency distribution (TFD) considered in this paper. It is characterized by excellent time and frequency resolutions and thus it is effectively employed in numerous applications in the condition monitoring of machinery. The aim and the innovation of this work regards SPWVD utilization to study turbomachinery behavior in detail in order to identify incipient surge conditions in the centrifugal compressor starting from operational vibrational responses measured at significant plant locations. The so developed investigation allows us to assess the reliability of this innovative technique with respect to conventional ones in this field of research, highlighting at the same time its qualities and drawbacks in detecting fluid machinery unstable behavior. To this aim, an experimental campaign has been conducted on a T100 microturbine connected with several volume sizes and this has allowed to assess diagnostic technique reliability in plant configurations with different dynamic properties. The results show that SPWVD is able to successfully identify system evolution toward an unstable condition, by recognizing different levels and features of the particular kind of instability that is going to take place within the plant. Instability phenomena regarding rolling bearings have also been identified and their interaction with surge onset has been investigated for diagnostic purposes

    Surge prevention in gas turbines: an overview over historical solutions and perspectives about the future

    Get PDF
    The aim of the present work is to retrace experimental, analytical and numerical analyses which deal with compressor instability phenomena, such as rotating stall and surge. While the first affects only the machine itself, the second involves the whole energy system. Surge onset is characterized by strong pressure and mass flow rate fluctuations which can even lead to reverse flow through the compressor. Experimental studies on prevention of axial compressor fluid dynamic instabilities, which can be propagated and eventually damage the solid structure, have been carried out by many authors. The first important studies on this topic tried to underline the main aspects of the complex detailed mechanism of surge, by replacing the compression system with an equivalent conceptual lumped parameter model. This is specially meant to capture the unsteady behaviour and the transient response of the compression system itself, particularly its dependence on variations in the volume of discharge downstream and in the settings of the throttle valve at its outlet (which simulates the actual load coupled to the compressor). Greitzer’s model is still regarded as the milestone for new investigations about active control and stabilization of surge and, more generally, about active suppression of aerodynamic instabilities in turbomachinery. During the last years, a lot of simulations and experimental studies about surge have been conducted on multistage centrifugal compressors with different architectures (e.g. equipped with vaneless or vaned diffusers). Moreover, further kinds of analysis try to extend the stable working zone of compressors, identifying stall and surge precursors extractable from information contained in the vibro-acoustical and rotodynamic response of the system
    corecore