28 research outputs found

    Fish Oil and Inflammation: A Perspective on the Challenges of Evaluating Efficacy in <em>Trypanosoma cruzi</em> Infection

    Get PDF
    Parasitic diseases constitute a big problem of ill health in both the tropics and subtropics as well as in more temperate climates and have been targeted by the Centers for Disease Control and Prevention (CDC) as priorities for public health in the USA. Parasitic infections can be caused by three types of organisms: protozoa, helminths and ectoparasites. They subsist on the host’s nutrients at the host’s expense. Effectively combating infections caused by parasites is essential for the survival of the organism. In this effort, cells and molecules of the immune system are susceptible to the modulating influence of fatty acids. The primary purpose of this chapter is to present a critical review of the multiple effects of fish-oil on Trypanosoma infection

    iNOS inhibition improves autonomic dysfunction and oxidative status in hypertensive obese rats

    No full text
    It has been suggested that nitric oxide (NO) from iNOS source is involved in inflammation and oxidative stress, and hypertension in obese subjects involves an inflammatory process. However, no study evaluated the participation of iNOS inhibition on cardiovascular, autonomic, and inflammatory parameters in obese rats. Obesity was induced by the administration of 4 mg/g body weight of monosodium glutamate (MSG) or equimolar saline (CTR) in newborn rats. On the 60th day, treatment with aminoguanidine (Amino, 50 mg/kg), an iNOS inhibitor, or 0.9% saline, was started. On the 90th day, mean arterial pressure (MAP) and heart rate (HR) were recorded in conscious rats and autonomic modulation was conducted with the CardioSeries software. Plasma samples were collected to assess lipid peroxidation and prostaglandins (PGE2). In addition, iNOS immunohistochemistry in cardiac tissue was evaluated. MSG rats showed hypertension compared to CTR, and Amino treatment did not reverse it. Obese rats presented increased sympathetic and decreased parasympathetic modulation to the heart, reverted by Amino treatment. Plasma PGE2 was increased in obese rats, and Amino treatment decreased. Obese rats presented increased plasma lipoperoxidation, which was decreased after Amino treatment. Also, cardiac iNOS immunohistochemistry was decreased after Amino treatment. Our data suggest that iNOS activation is involved in the systemic and cardiac mechanisms of oxidative stress, inflammation, and autonomic dysfunction derived from obesity

    Chemoreflex and baroreflex alterations in Parkinsonism induced by 6-OHDA in unanesthetized rats

    No full text
    Parkinson's disease (PD) is mainly characterized by motor signals. However, non-motor signals also affect and decrease the quality of life of PD patients. Among these non-motor signs are cardiovascular disorders as orthostatic hypotension, postprandial hypotension and cardiac arrhythmias, which may be due to the involvement of both central nervous system and peripheral autonomic nervous system. In the present study we investigated the cardiovascular function, evaluating cardiovascular reflexes (chemoreflex and baroreflex), in an animal model of Parkinsonism induced by bilateral infusion of the toxin 6-hydroxydopamine (6-OHDA), in the substantia nigra pars compacta (SNpc). The results showed that the animals induced to Parkinsonism had lower arterial pressure (AP) and heart rate HR) compared to control animals. We showed that after activation of the baroreceptors by phenylephrine (Phe) and sodium nitroprusside (SNP), the baroreflex sensitivity index was not changed between the groups. However, there was a greater increase in the AP when stimulated with Phe and greater tachycardia when stimulated with SNP in 6-OHDA animals. After activation of the peripheral chemoreceptors through KCN injection (cytotoxic hypoxia), there was a higher increase in pressor and bradycardic response in injured animals with bilateral 6-OHDA. These changes in the cardiovascular reflexes may be important adjustments mechanisms to maintain the cerebral blood flow in those animals, and may be a result of denervation supersensitivity to catecholamines in autonomic targets.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Efeito do óxido nítrico no transporte mucociliar Effects of nitric oxide in mucociliary transport

    No full text
    As vias aéreas, constituídas por epitélio ciliado e secretor de muco, promovem ao trato respiratório mecanismo de defesa que livra esta superfície das partículas inaladas durante a respiração. É de fundamental importância o entendimento da fisiologia e dos mecanismos envolvidos com a atividade mucociliar. A literatura sugere que o NO, em especial o produzido pela expressão da iNOS, mantém a função mucociliar e a defesa imune da cavidade nasal. OBJETIVO: Avaliar o envolvimento do NO e das vias enzimáticas da produção do NO no transporte mucociliar, utilizando inibidores da NO sintase constitutiva e indutiva, L-NAME e aminoguanidina, respectivamente. MATERIAIS E MÉTODOS: Preparações de palatos de rã foram imersos em soluções de ringer (controle), L-NAME ou aminoguanidina. Os palatos foram imersos nestas soluções por quatro períodos de 15 minutos. Medidas da velocidade do transporte mucociliar foram feitas antes e após cada exposição. RESULTADOS: Palatos controles mantiveram estável a velocidade do transporte. O L-NAME aumentou, enquanto a aminoguanidina reduziu a velocidade de transporte do muco. CONCLUSÃO: O bloqueio inespecífico da cNOS com L-NAME e bloqueio relativamente específico da iNOS com aminoguanidina permitiu propor que dependendo da via o NO pode aumentar ou diminuir o transporte mucociliar em palatos de rã.The airways are made up of ciliated epithelium which secretes mucous, protecting the respiratory tract from particles inhaled during breathing. Its is paramount to understand the physiology and the mechanisms involved in mucociliary activity. Literature suggests that Nitric oxide (NO), especially the one produced by iNOS expression, maintains the mucociliary function and the immune defense of the nasal cavity. AIM: to assess NO participation and the enzymatic pathways in the production of NO and mucociliary transport, using constructive and inductive NO synthetase inhibitors, L-NAME and aminoguanidine, respectively. MATERIALS AND METHODS: frog palates were prepared and immerse in ringer (control), L-NAME or aminoguanidine solutions. The palates were immerse in these solutions for four periods of 15 minutes. Mucociliary transport measures were carried out before and after each exposure. RESULTS: control palates maintained stable their transportation speed. L-NAME increased, while aminoguanidine reduced mucous transportation velocity. CONCLUSION: unspecific cNOS block with L-NAME and relatively specific iNOS block with aminoguanidine results leads us to propose that depending on the pathway, the NO can increase or reduce mucociliary transport in frog palates

    Regulation of arterial pressure by the paraventricular nucleus in conscious rats: interactions among glutamate, GABA, and nitric oxide

    No full text
    The paraventricular nucleus (PVN) of the hypothalamus is an important site for autonomic and neuroendocrine regulation. Experiments in anesthetized animals and in vitro indicate an interaction among gamma-aminobutyric acid (GABA), nitric oxide (NO) and glutamate in the PVN. The cardiovascular role of the PVN and interactions of these neurotransmitters in conscious animals have not been evaluated fully. In chronically instrumented conscious rats, mean arterial pressure (MAP) and heart rate (HR) responses to microinjections (100 nl) in the region of the PVN were tested. Bilateral blockade of ionotropic excitatory amino acid (EAA) receptors (kynurenic acid, Kyn) in the PVN produced small but significant decreases in MAP and HR. GABAA receptor blockade (bicuculline, Bic), and inhibition of NO synthase (N-(G)-monomethyl-L-arginine, L-NMMA) each increased MAP and HR. The NO donor sodium nitroprusside (SNP) produced depressor responses that were attenuated by Bic. NO synthase inhibition potentiated both pressor responses to the selective EAA agonist, N-methyl-D-aspartic acid (NMDA), and depressor responses to Kyn. Increases in MAP and HR due to Bic were blunted by prior blockade of EAA receptors. Thus, pressor responses to GABA blockade require EAA receptors and GABA neurotransmission contributes to NO inhibition. Tonic excitatory effects of glutamate in the PVN are tonically attenuated by NO. These data demonstrate that, in the PVN of conscious rats, GABA, glutamate and NO interact in a complex fashion to regulate arterial pressure and heart rate under normal conditions
    corecore