3 research outputs found

    Multi-species oral biofilm promotes reconstructed human gingiva epithelial barrier function

    No full text
    Since the oral mucosa is continuously exposed to abundant microbes, one of its most important defense features is a highly proliferative, thick, stratified epithelium. The cellular mechanisms responsible for this are still unknown. The aim of this study was to determine whether multi-species oral biofilm contribute to the extensive stratification and primed antimicrobial defense in epithelium. Two in vitro models were used: 3D reconstructed human gingiva (RHG) and oral bacteria representative of multi-species commensal biofilm. The organotypic RHG consists of a reconstructed stratified gingiva epithelium on a gingiva fibroblast populated hydrogel (lamina propria). Biofilm was cultured from healthy human saliva, and consists of typical commensal genera Granulicatella and major oral microbiota genera Veillonella and Streptococcus. Biofilm was applied topically to RHG and host-microbiome interactions were studied over 7 days. Compared to unexposed RHG, biofilm exposed RHG showed increased epithelial thickness, more organized stratification and increased keratinocyte proliferation. Furthermore biofilm exposure increased production of RHG anti-microbial proteins Elafin, HBD2 and HBD3 but not HBD1, adrenomedullin or cathelicidin LL-37. Inflammatory and antimicrobial cytokine secretion (IL-6, CXCL8, CXCL1, CCL20) showed an immediate and sustained increase. In conclusion, exposure of RHG to commensal oral biofilm actively contributes to RHG epithelial barrier function

    Effect of erythritol on microbial ecology of in vitro gingivitis biofilms

    Get PDF
    Gingivitis is one of the most common oral infections in humans. While sugar alcohols such as erythritol are suggested to have caries-preventive properties, it may also have beneficial effects in prevention of gingivitis by preventing maturation of oral biofilms. The aim of this study was to assess the effect of erythritol on the microbial ecology and the gingivitis phenotype of oral microcosms. Biofilms were inoculated with stimulated saliva from 20 healthy donors and grown in a gingivitis model in the continuous presence of 0 (control group), 5, and 10% erythritol. After 9 days of growth, biofilm formation, protease activity (gingivitis phenotype), and microbial profile analyses were performed. Biofilm growth was significantly reduced in the presence of erythritol, and this effect was dose dependent. Protease activity and the Shannon diversity index of the microbial profiles of the biofilms were significantly lower when erythritol was present. Microbial profile analysis revealed that presence of erythritol induced a compositional shift from periodontitis- and gingivitis-related taxa toward early colonizers. The results of this study suggest that erythritol suppresses maturation of the biofilms toward unhealthy composition. The gingivitis phenotype was suppressed and biofilm formation was reduced in the presence of erythritol. Therefore, it is concluded that erythritol may contribute to a healthy oral ecosystem in vitro
    corecore