32 research outputs found

    Complexes de fer mononucléaires non hémiques (modèles de catalyseurs d'oxydation biologiques)

    No full text
    Ce manuscrit traite de la modélisation structurale et fonctionnelle des sites actifs non-hemiques de type mono- et dioxygenases a fer. Les complexes de départ utilises sont des complexes de Fe(II) avec des ligands simples de type aminopyridine. L'activité de ces complexes en présence d'oxydants a été étudie afin d'observer des intermédiaires réactionnels. Le chapitre I fait référence aux connaissances actuelles sur les systèmes naturels et les modèles mononucléaires a fer. Le chapitre II décrit la synthèse et la caractérisation d'un nouvel intermédiaire [(TPEN)Fe(IV)=O](PF6)2. Cette espèce a été caractérisée par absorption UV-visible, spectrométrie de masse, FT-IR en solution et par SQUID et mossbauer sous forme de poudre. La capacité d'échange de l'atome d'oxygène avec H2(18O) a été mise en évidence par spectrométrie de masse et confirmée par FT-IR. Le chapitre III présente l'étude complémentaire du système [(L52)Fe(III)(OOH)]2+ déjà obtenu au laboratoire. Les spectres RPE en solution montrent la présence de deux espèces bas spin avec des valeurs de g caractéristiques des espèces Fe(III)OOH très proches. Les études menées semblent indiquer que ce sont deux espèces Fe(III)OOH avec des orientations du groupement hydroperoxo différentes, probablement dues a des interactions intra- ou intermoléculaires. Le complexe [(L52)Fe(III)(OOH)](PF6)2 a été obtenu sous forme solide. Les études spectroscopiques de cette poudre sont en cours. Les chapitres IV, V et Vi présentent l'étude de nouveaux complexes de Fe(II) obtenus avec un nouveau ligand L52aH contenant une fonction pivaloylamine sur une pyridine. La réactivité d'un des complexes de Fe(II) avec un excès d'eau oxygénée a permis d'obtenir un nouvel intermédiaire Fe(III)OOH dont les caractéristiques spectroscopiques sont semblables a celles des espèces Fe(III)OOH connues dans la littérature. Un équilibre spontané en solution entre les formes Fe(III)OOH et Fe(III)(eta2-OO) a été mis en évidence. La réaction entre le complexe [(L52aH)Fe(II)](BPh4)2 et O2 en présence de proton et de réducteur dans l'acetonitrile a également été mise en évidence. La formation de l'espèce [(L52aH)Fe(III)OOH]2+ a été mise en évidence dans ces conditions. Cette espèce évolue en une espèce Fe(III) haut spin verte. Les premières études de ce système semblent montrer qu'il s'agit d'une espèce Fe(III)OOR ou R = BPh3.This work deals with the synthesis and characterization of model complexes of mono- and dioxygenases. The complexes used are Fe(II) complexes with aminopyridin ligands. The reactivity of these complexes upon addition of oxidants (H2O2, mCPBA) has been studied in order to observe reactional intermediates. Chapter I reviews the natural systems and model compounds known in literature. A new Fe(IV)=O complex has been obtained (chapter II). It has been characterized by UV-Vis absorption, FT-IR in solution and by SQUID and mossbauer spectroscopy on the powder sample. The exchange of the oxygen atom with water has been highlighted by ESI-MS and FT-IR measurements. A complementary of the well complex [(L52)Fe(III)(OOH)]2+ has been done (chapter III). The EPR spectra in solution display the signals of two low spin Fe(III) species. The g values of these species are very close. We propose that the solution contains two Fe(III)-OOH species with different orientation of the hydroperoxo group. The intermediate has also been obtained as a powder. The characterization of this powder is still under study in the laboratory. New Fe(II) complexes hav been synthesized with a new ligand which bears a pivaloylamine arm (chapter IV). This function offers a rich coordination chemistry. The reactivity of these complexes with H2O2 has been studied (chapter V). A new Fe(III)-OOH complex has been obtained and characterized by UV-vis absorption, EPR and resonance raman spectroscopy. This study shows that the ligand is coordinated to the iron centre by 4 nitrogen atoms and the oxygen atom from the pivaloylamio arm. A spontaneous equilibrium between the Fe(III)-OOH and the Fe(III)-(eta2-OO) species has also been observed. Finally, the reaction of the Fe(II) complex with dioxygen, in presence of reductants and protons in acetonitrile, leads to the Fe(III)-OOH complex. This intermediate evolves into a green Fe(III) species, which appears to be Fe(III) peroxo species based on resonance raman spectroscopy.ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF

    Marqueurs de spin : des espions au cœur des protéines

    No full text
    International audienc

    Marqueurs de spin : des espions au cœur des protéines

    No full text
    International audienc

    Flexibilité structurale de Tau lors de l'interaction avec des microtubules étudiée par marquage de spin et RPE

    No full text
    International audienceTau is a microtubule-associated protein that belongs to the Intrinsically Disordered Proteins (IDPs) family. IDPs or Intrinsically Disordered Regions (IDRs) play key roles in protein interaction networks and their dysfunctions are often related to severe diseases. Defined by their lack of stable secondary and tertiary structures in physiological conditions while being functional, these proteins use their inherent structural flexibility to adapt to and interact with various binding partners. Knowledges on the structural dynamics of IDPs and their different conformers are crucial to finely decipher fundamental biological processes controlled by mechanisms such as conformational adaptations or switches, induced fit, or conformational selection events. Different mechanisms of binding have been proposed: among them, the so-called folding-upon-binding in which the IDP adopts a certain conformation upon interacting with a partner protein, or the formation of a “fuzzy” complex in which the IDP partly keeps its dynamical character at the surface of its partner. The dynamical nature and physicochemical properties of unbound as well as bound IDPs make this class of proteins particularly difficult to characterize by classical bio-structural techniques and require specific approaches for the fine description of their inherent dynamics.Among other techniques, Site-Directed Spin Labeling combined with Electron Paramagnetic Resonance (SDSL-EPR) spectroscopy has gained much interest in this last decade for the study of IDPs. SDSL-EPR consists in grafting a paramagnetic label (mainly a nitroxide radical) at selected site(s) of the macromolecule under interest followed by its observation using and/or combining different EPR strategies. These nitroxide spin labels detected by continuous wave (cw) EPR spectroscopy are used as perfect reporters or “spy spins” of their local environment, being able to reveal structural transitions, folding/unfolding events, etc. Another approach is based on the measurement of inter-label distance distributions in the 1.5–8.0 nm range using pulsed dipolar EPR experiments, such as Double Electron-Electron Resonance (DEER) spectroscopy. The technique is then particularly well suited to study the behavior of Tau in its interaction with its physiological partner: microtubules (MTs). In this chapter we provide a detailed experimental protocol for the labeling of Tau protein and its EPR study while interacting with preformed (Paclitaxel-stabilized) MTs, or using Tau as MT inducer. We show how the choice of nitroxide label can be crucial to obtain functional information on Tau/tubulin complexes

    Guidelines for the Simulations of Nitroxide X-Band cw EPR Spectra from Site-Directed Spin Labeling Experiments Using SimLabel

    No full text
    International audienceSite-directed spin labeling (SDSL) combined with continuous wave electron paramagnetic resonance (cw EPR) spectroscopy is a powerful technique to reveal, at the local level, the dynamics of structural transitions in proteins. Here, we consider SDSL-EPR based on the selective grafting of a nitroxide on the protein under study, followed by X-band cw EPR analysis. To extract valuable quantitative information from SDSL-EPR spectra and thus give a reliable interpretation on biological system dynamics, a numerical simulation of the spectra is required. However, regardless of the numerical tool chosen to perform such simulations, the number of parameters is often too high to provide unambiguous results. In this study, we have chosen SimLabel to perform such simulations. SimLabel is a graphical user interface (GUI) of Matlab, using some functions of Easyspin. An exhaustive review of the parameters used in this GUI has enabled to define the adjustable parameters during the simulation fitting and to fix the others prior to the simulation fitting. Among them, some are set once and for all (gy, gz) and others are determined (Az, gx) thanks to a supplementary X-band spectrum recorded on a frozen solution. Finally, we propose guidelines to perform the simulation of X-band cw-EPR spectra of nitroxide labeled proteins at room temperature, with no need of uncommon higher frequency spectrometry and with the minimal number of variable parameters

    Exploring intrinsically disordered proteins using site-directed spin labeling electron paramagnetic resonance spectroscopy

    Get PDF
    International audienceProteins are highly variable biological systems, not only in their structures but also in their dynamics. The most extreme example of dynamics is encountered within the family of Intrinsically Disordered Proteins (IDPs), which are proteins lacking a well-defined 3D structure under physiological conditions. Among the biophysical techniques well-suited to study such highly flexible proteins, Site-Directed Spin Labeling combined with EPR spectroscopy (SDSL-EPR) is one of the most powerful, being able to reveal, at the residue level, structural transitions such as folding events. SDSL-EPR is based on selective grafting of a paramagnetic label on the protein under study and is limited neither by the size nor by the complexity of the system. The objective of this mini-review is to describe the basic strategy of SDSL-EPR and to illustrate how it can be successfully applied to characterize the structural behavior of IDPs. Recent developments aimed at enlarging the panoply of SDSL-EPR approaches are presented in particular newly synthesized spin labels that allow the limitations of the classical ones to be overcome. The potentialities of these new spin labels will be demonstrated on different examples of IDP

    Guidelines for the Simulations of Nitroxide X-Band cw EPR Spectra from Site-Directed Spin Labeling Experiments Using SimLabel

    No full text
    Site-directed spin labeling (SDSL) combined with continuous wave electron paramagnetic resonance (cw EPR) spectroscopy is a powerful technique to reveal, at the local level, the dynamics of structural transitions in proteins. Here, we consider SDSL-EPR based on the selective grafting of a nitroxide on the protein under study, followed by X-band cw EPR analysis. To extract valuable quantitative information from SDSL-EPR spectra and thus give a reliable interpretation on biological system dynamics, a numerical simulation of the spectra is required. However, regardless of the numerical tool chosen to perform such simulations, the number of parameters is often too high to provide unambiguous results. In this study, we have chosen SimLabel to perform such simulations. SimLabel is a graphical user interface (GUI) of Matlab, using some functions of Easyspin. An exhaustive review of the parameters used in this GUI has enabled to define the adjustable parameters during the simulation fitting and to fix the others prior to the simulation fitting. Among them, some are set once and for all (gy, gz) and others are determined (Az, gx) thanks to a supplementary X-band spectrum recorded on a frozen solution. Finally, we propose guidelines to perform the simulation of X-band cw-EPR spectra of nitroxide labeled proteins at room temperature, with no need of uncommon higher frequency spectrometry and with the minimal number of variable parameters
    corecore