6 research outputs found

    Isotope or mass encoding of combinatorial libraries

    Get PDF
    Background: Combinatorial chemistry using solid-phase synthesis is a rapidly developing technology that can result in a significant reduction in the time required to find and optimize lead compounds. The application of this approach to traditional medicinal chemistry has led to the construction of libraries of small organic molecules on resin beads. A major difficulty in developing large combinatorial libraries is the lack of a facile encoding and decoding methodology to identify active compounds.Results: Several encoding schemes are described which use the ability of mass spectrometry to ascertain isotopic distributions. Molecular tags are attached to resin beads in parallel or on the linker used for chemical library synthesis. The tags are encoded via a controlled ratio of a number of stable isotopes on the tagging molecules, and range from a single to a complex isotopic distribution.Conclusions: A novel coding scheme is described that is useful for the generation of large encoded combinatorial libraries. The code can be cleaved after assay and analyzed by mass spectrometry in an automated fashion. An important element of the combinatorial discovery process is the ability to extract the structure-activity relationship (SAR) information made available by library screening. The speed and sensitivity of the mass-encoding scheme has the potential to determine the full SAR for a given library

    Cold water immersion in recovery following a single bout resistance exercise suppresses mechanisms of miRNA nuclear export and maturation

    No full text
    Cold water immersion (CWI) following intense exercise is a common athletic recovery practice. However, CWI impacts muscle adaptations to exercise training, with attenuated muscle hypertrophy and increased angiogenesis. Tissue temperature modulates the abundance of specific miRNA species and thus CWI may affect muscle adaptations via modulating miRNA expression following a bout of exercise. The current study focused on the regulatory mechanisms involved in cleavage and nuclear export of mature miRNA, including DROSHA, EXPORTIN-5, and DICER. Muscle biopsies were obtained from the vastus lateralis of young males (n = 9) at rest and at 2, 4, and 48 h of recovery from an acute bout of resistance exercise, followed by either 10 min of active recovery (ACT) at ambient temperature or CWI at 10°C. The abundance of key miRNA species in the regulation of intracellular anabolic signaling (miR-1 and miR-133a) and angiogenesis (miR-15a and miR-126) were measured, along with several gene targets implicated in satellite cell dynamics (NCAM and PAX7) and angiogenesis (VEGF and SPRED-1). When compared to ACT, CWI suppressed mRNA expression of DROSHA (24 h p = 0.025 and 48 h p = 0.017), EXPORTIN-5 (24 h p = 0.008), and DICER (24 h p = 0.0034). Of the analyzed miRNA species, miR-133a (24 h p < 0.001 and 48 h p = 0.007) and miR-126 (24 h p < 0.001 and 48 h p < 0.001) remained elevated at 24 h post-exercise in the CWI trial only. Potential gene targets of these miRNA, however, did not differ between trials. CWI may therefore impact miRNA abundance in skeletal muscle, although the precise physiological relevance needs further investigation.</p

    Discovery of Clinical Candidate 4‑[2-(5-Amino‑1<i>H</i>‑pyrazol-4-yl)-4-chlorophenoxy]-5-chloro-2-fluoro‑<i>N</i>‑1,3-thiazol-4-ylbenzenesulfonamide (PF-05089771): Design and Optimization of Diaryl Ether Aryl Sulfonamides as Selective Inhibitors of Na<sub>V</sub>1.7

    No full text
    A series of acidic diaryl ether heterocyclic sulfonamides that are potent and subtype selective Na<sub>V</sub>1.7 inhibitors is described. Optimization of early lead matter focused on removal of structural alerts, improving metabolic stability and reducing cytochrome P450 inhibition driven drug–drug interaction concerns to deliver the desired balance of preclinical in vitro properties. Concerns over nonmetabolic routes of clearance, variable clearance in preclinical species, and subsequent low confidence human pharmacokinetic predictions led to the decision to conduct a human microdose study to determine clinical pharmacokinetics. The design strategies and results from preclinical PK and clinical human microdose PK data are described leading to the discovery of the first subtype selective Na<sub>V</sub>1.7 inhibitor clinical candidate PF-05089771 (<b>34</b>) which binds to a site in the voltage sensing domain

    Discovery of Clinical Candidate 4‑[2-(5-Amino‑1<i>H</i>‑pyrazol-4-yl)-4-chlorophenoxy]-5-chloro-2-fluoro‑<i>N</i>‑1,3-thiazol-4-ylbenzenesulfonamide (PF-05089771): Design and Optimization of Diaryl Ether Aryl Sulfonamides as Selective Inhibitors of Na<sub>V</sub>1.7

    No full text
    A series of acidic diaryl ether heterocyclic sulfonamides that are potent and subtype selective Na<sub>V</sub>1.7 inhibitors is described. Optimization of early lead matter focused on removal of structural alerts, improving metabolic stability and reducing cytochrome P450 inhibition driven drug–drug interaction concerns to deliver the desired balance of preclinical in vitro properties. Concerns over nonmetabolic routes of clearance, variable clearance in preclinical species, and subsequent low confidence human pharmacokinetic predictions led to the decision to conduct a human microdose study to determine clinical pharmacokinetics. The design strategies and results from preclinical PK and clinical human microdose PK data are described leading to the discovery of the first subtype selective Na<sub>V</sub>1.7 inhibitor clinical candidate PF-05089771 (<b>34</b>) which binds to a site in the voltage sensing domain
    corecore