5 research outputs found

    Redox-Mediated Reconstruction of Copper during Carbon Monoxide Oxidation

    No full text
    Copper has excellent initial activity for the oxidation of CO, yet it rapidly deactivates under reaction conditions. In an effort to obtain a full picture of the dynamic morphological and chemical changes occurring on the surface of catalysts under CO oxidation conditions, a complementary set of in situ ambient pressure (AP) techniques that include scanning tunneling microscopy, infrared reflection absorption spectroscopy (IRRAS), and X-ray photoelectron spectroscopy were conducted. Herein, we report in situ AP CO oxidation experiments over Cu(111) model catalysts at room temperature. Depending on the CO:O<sub>2</sub> ratio, Cu presents different oxidation states, leading to the coexistence of several phases. During CO oxidation, a redox cycle is observed on the substrate’s surface, in which Cu atoms are oxidized and pulled from terraces and step edges and then are reduced and rejoin nearby step edges. IRRAS results confirm the presence of under-coordinated Cu atoms during the reaction. By using control experiments to isolate individual phases, it is shown that the rate for CO oxidation decreases systematically as metallic copper is fully oxidized

    The Surface Structure of Cu<sub>2</sub>O(100)

    No full text
    Despite the industrial importance of copper oxides, the nature of the (100) surface of Cu<sub>2</sub>O has remained poorly understood. The surface has previously been subject to several theoretical and experimental studies, but has until now not been investigated by atomically resolved microscopy or high-resolution photoelectron spectroscopy. Here we determine the atomic structure and electronic properties of Cu<sub>2</sub>O­(100) by a combination of multiple experimental techniques and simulations within the framework of density functional theory (DFT). Low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) characterized the three ordered surface structures found. From DFT calculations, the structures are found to be energetically ordered as (3,0;1,1), c(2 × 2), and (1 × 1) under ultrahigh vacuum conditions. Increased oxygen pressures induce the formation of an oxygen terminated (1 × 1) surface structure. The most common termination of Cu<sub>2</sub>O­(100) has previously been described by a (3√2 × √2)­R45° unit cell exhibiting a LEED pattern with several missing spots. Through atomically resolved STM, we show that this structure instead is described by the matrix (3,0;1,1). Both simulated STM images and calculated photoemission core level shifts compare favorably with the experimental results

    <i>In Situ</i> Imaging of Cu<sub>2</sub>O under Reducing Conditions: Formation of Metallic Fronts by Mass Transfer

    No full text
    Active catalytic sites have traditionally been analyzed based on static representations of surface structures and characterization of materials before or after reactions. We show here by a combination of <i>in situ</i> microscopy and spectroscopy techniques that, in the presence of reactants, an oxide catalyst’s chemical state and morphology are dynamically modified. The reduction of Cu<sub>2</sub>O films is studied under ambient pressures (AP) of CO. The use of complementary techniques allows us to identify intermediate surface oxide phases and determine how reaction fronts propagate across the surface by massive mass transfer of Cu atoms released during the reduction of the oxide phase in the presence of CO. High resolution <i>in situ</i> imaging by AP scanning tunneling microscopy (AP-STM) shows that the reduction of the oxide films is initiated at defects both on step edges and the center of oxide terraces

    <i>In Situ</i> Imaging of Cu<sub>2</sub>O under Reducing Conditions: Formation of Metallic Fronts by Mass Transfer

    No full text
    Active catalytic sites have traditionally been analyzed based on static representations of surface structures and characterization of materials before or after reactions. We show here by a combination of <i>in situ</i> microscopy and spectroscopy techniques that, in the presence of reactants, an oxide catalyst’s chemical state and morphology are dynamically modified. The reduction of Cu<sub>2</sub>O films is studied under ambient pressures (AP) of CO. The use of complementary techniques allows us to identify intermediate surface oxide phases and determine how reaction fronts propagate across the surface by massive mass transfer of Cu atoms released during the reduction of the oxide phase in the presence of CO. High resolution <i>in situ</i> imaging by AP scanning tunneling microscopy (AP-STM) shows that the reduction of the oxide films is initiated at defects both on step edges and the center of oxide terraces

    <i>In Situ</i> Imaging of Cu<sub>2</sub>O under Reducing Conditions: Formation of Metallic Fronts by Mass Transfer

    No full text
    Active catalytic sites have traditionally been analyzed based on static representations of surface structures and characterization of materials before or after reactions. We show here by a combination of <i>in situ</i> microscopy and spectroscopy techniques that, in the presence of reactants, an oxide catalyst’s chemical state and morphology are dynamically modified. The reduction of Cu<sub>2</sub>O films is studied under ambient pressures (AP) of CO. The use of complementary techniques allows us to identify intermediate surface oxide phases and determine how reaction fronts propagate across the surface by massive mass transfer of Cu atoms released during the reduction of the oxide phase in the presence of CO. High resolution <i>in situ</i> imaging by AP scanning tunneling microscopy (AP-STM) shows that the reduction of the oxide films is initiated at defects both on step edges and the center of oxide terraces
    corecore