3 research outputs found

    Mapping Between Databases of Compounds and Protein Targets

    No full text
    <p>Databases that provide links between bioactive compounds and their protein targets are increasingly important in drug discovery and chemical biology. They join the expanding universes of cheminformatics via chemical structures on the one hand and bioinformatics via sequences on the other. However, it is difficult to assess the relative utility of databases without the explicit comparison of content. We have exemplified an approach to this by comparing resources that each has a different focus on bioactive chemistry (ChEMBL, DrugBank, Human Metabolome Database, and Therapeutic Target Database) both at the chemical structure and protein levels. We compared the compound sets at different representational stringencies using NCI/CADD Structure Identifiers. The overlap and uniqueness in chemical content can be broadly interpreted in the context of different data capture strategies. However, we recorded apparent anomalies, such as many compounds-in-common between the metabolite and drug databases. We also compared the content of sequences mapped to the compounds via their UniProt protein identifiers. While these were also generally interpretable in the context of individual databases we discerned differences in coverage and the types of supporting data used. For example, the target concept is applied differently between DrugBank and the Therapeutic Target Database. In ChEMBL it encompasses a broader range of mappings from chemical biology and species orthologue cross-screening in addition to drug targets per se. Our analysis should assist users not only in exploiting the synergies between these four high-value resources but also in assessing the utility of other databases at the interface of chemistry and biology.</p

    Enumeration of Ring–Chain Tautomers Based on SMIRKS Rules

    No full text
    A compound exhibits (prototropic) tautomerism if it can be represented by two or more structures that are related by a formal intramolecular movement of a hydrogen atom from one heavy atom position to another. When the movement of the proton is accompanied by the opening or closing of a ring it is called ring–chain tautomerism. This type of tautomerism is well observed in carbohydrates, but it also occurs in other molecules such as warfarin. In this work, we present an approach that allows for the generation of all ring–chain tautomers of a given chemical structure. Based on Baldwin’s Rules estimating the likelihood of ring closure reactions to occur, we have defined a set of transform rules covering the majority of ring–chain tautomerism cases. The rules automatically detect substructures in a given compound that can undergo a ring–chain tautomeric transformation. Each transformation is encoded in SMIRKS line notation. All work was implemented in the chemoinformatics toolkit CACTVS. We report on the application of our ring–chain tautomerism rules to a large database of commercially available screening samples in order to identify ring–chain tautomers

    PDB Ligand Conformational Energies Calculated Quantum-Mechanically

    No full text
    We present here a greatly updated version of an earlier study on the conformational energies of protein–ligand complexes in the Protein Data Bank (PDB) [Nicklaus et al. <i>Bioorg. Med. Chem</i>. <b>1995</b>, <i>3</i>, 411–428], with the goal of improving on all possible aspects such as number and selection of ligand instances, energy calculations performed, and additional analyses conducted. Starting from about 357,000 ligand instances deposited in the 2008 version of the Ligand Expo database of the experimental 3D coordinates of all small-molecule instances in the PDB, we created a “high-quality” subset of ligand instances by various filtering steps including application of crystallographic quality criteria and structural unambiguousness. Submission of 640 Gaussian 03 jobs yielded a set of about 415 successfully concluded runs. We used a stepwise optimization of internal degrees of freedom at the DFT level of theory with the B3LYP/6-31G­(d) basis set and a single-point energy calculation at B3LYP/6-311++G­(3df,2p) after each round of (partial) optimization to separate energy changes due to bond length stretches vs bond angle changes vs torsion changes. Even for the most “conservative” choice of all the possible conformational energiesthe energy difference between the conformation in which all internal degrees of freedom except torsions have been optimized and the fully optimized conformersignificant energy values were found. The range of 0 to ∼25 kcal/mol was populated quite evenly and independently of the crystallographic resolution. A smaller number of “outliers” of yet higher energies were seen only at resolutions above 1.3 Å. The energies showed some correlation with molecular size and flexibility but not with crystallographic quality metrics such as the Cruickshank diffraction-component precision index (DPI) and R<sub>free</sub>-R, or with the ligand instance-specific metrics such as occupancy-weighted B-factor (OWAB), real-space R factor (RSR), and real-space correlation coefficient (RSCC). We repeated these calculations with the solvent model IEFPCM, which yielded energy differences that were generally somewhat lower than the corresponding vacuum results but did not produce a qualitatively different picture. Torsional sampling around the crystal conformation at the molecular mechanics level using the MMFF94s force field typically led to an increase in energy
    corecore