235 research outputs found

    A new bound on Lorentz violation based on the absence of vacuum Cherenkov radiation in ultra-high energy air showers

    Full text link
    In extensive air showers induced by ultra-high energy (UHE) cosmic rays, secondary particles are produced with energies far above those accessible by other means. These extreme energies can be used to search for new physics. We study the effects of isotropic, nonbirefringent Lorentz violation in the photon sector. In case of a photon velocity smaller than the maximum attainable velocity of standard Dirac fermions, vacuum Cherenkov radiation becomes possible. Implementing this Lorentz-violating effect in air shower simulations, a significant reduction of the calculated average atmospheric depth of the shower maximum \left is obtained. Based on \left and its shower-to-shower fluctuations σ(Xmax)\sigma(X_\text{max}), a new bound on Lorentz violation is derived which improves the previous one by a factor of 2. This is the first such bound based on the absence of vacuum Cherenkov radiation from fundamental particles (electrons and positrons) in air showers. Options for further improvements are discussed.Comment: 14 pages, 5 figures, accepted for publication in Phys. Rev. D. arXiv admin note: text overlap with arXiv:2106.0101

    Energy Release in Air Showers

    Full text link
    A simulation study of the energy released in air due to the development of an extensive air shower has been carried out using the CORSIKA code. The contributions to the energy release from different particle species and energies as well as the typical particle densities are investigated. Special care is taken of particles falling below the energy threshold of the simulation which contribute about 10% to the total energy deposition. The dominant contribution to the total deposition stems from electrons and positrons from sub-MeV up to a few hundred MeV, with typical transverse distances between particles exceeding 1 mm for 10 EeV showers.Comment: 12 pages, 3 figures, accepted by Astropart. Phys.; small content changes in final versio

    Sensitivity of the correlation between the depth of shower maximum and the muon shower size to the cosmic ray composition

    Full text link
    The composition of ultra-high energy cosmic rays is an important issue in astroparticle physics research, and additional experimental results are required for further progress. Here we investigate what can be learned from the statistical correlation factor r between the depth of shower maximum and the muon shower size, when these observables are measured simultaneously for a set of air showers. The correlation factor r contains the lowest-order moment of a two-dimensional distribution taking both observables into account, and it is independent of systematic uncertainties of the absolute scales of the two observables. We find that, assuming realistic measurement uncertainties, the value of r can provide a measure of the spread of masses in the primary beam. Particularly, one can differentiate between a well-mixed composition (i.e., a beam that contains large fractions of both light and heavy primaries) and a relatively pure composition (i.e., a beam that contains species all of a similar mass). The number of events required for a statistically significant differentiation is ~ 200. This differentiation, though diluted, is maintained to a significant extent in the presence of uncertainties in the phenomenology of high energy hadronic interactions. Testing whether the beam is pure or well-mixed is well motivated by recent measurements of the depth of shower maximum.Comment: Accepted for publication in Astroparticle Physics, LA-UR-12-2008

    Extensive air shower simulations at the highest energies

    Get PDF
    Air shower simulation programs are essential tools for the analysis of data from cosmic ray experiments and for planning the layout of new detectors. They are used to estimate the energy and mass of the primary particle. Unfortunately the model uncertainties translate directly into systematic errors in the energy and mass determination. Aiming at energies > 1019 eV, the models have to be extrapolated far beyond the energies available at accelerators. On the other hand, hybrid measurement of ground particle densities and calorimetric shower energy, as will be provided by the Pierre Auger Observatory, will strongly constrain shower models. While the main uncertainty of contemporary models comes from our poor knowledge of the (soft) hadronic interactions at high energies, also electromagnetic interactions, lowenergy hadronic interactions and the particle transport influence details of the shower development. We review here the physics processes and some of the computational techniques of air shower models presently used for highest energies, and discuss the properties and limitations of the models.Facultad de Ciencias Exacta

    Extensive air shower simulations at the highest energies

    Get PDF
    Air shower simulation programs are essential tools for the analysis of data from cosmic ray experiments and for planning the layout of new detectors. They are used to estimate the energy and mass of the primary particle. Unfortunately the model uncertainties translate directly into systematic errors in the energy and mass determination. Aiming at energies > 1019 eV, the models have to be extrapolated far beyond the energies available at accelerators. On the other hand, hybrid measurement of ground particle densities and calorimetric shower energy, as will be provided by the Pierre Auger Observatory, will strongly constrain shower models. While the main uncertainty of contemporary models comes from our poor knowledge of the (soft) hadronic interactions at high energies, also electromagnetic interactions, lowenergy hadronic interactions and the particle transport influence details of the shower development. We review here the physics processes and some of the computational techniques of air shower models presently used for highest energies, and discuss the properties and limitations of the models.Facultad de Ciencias Exacta
    corecore