91 research outputs found

    A whole-genome population structure analysis within cattle breeds

    Get PDF

    Estimates of Genetic Parameters for Shape Space Data in Franches-Montagnes Horses

    Get PDF
    Conformation traits such as joint angles are important selection criteria in equine breeding, but mainly consist of subjective evaluation scores given by breeding judges, showing limited variation. The horse shape space model extracts shape data from 246 landmarks (LM) and objective joint angle measurements from triplets of LM on standardized horse photographs. The heritability was estimated for 10 joint angles (seven were measured twice with different LM placements), and relative warp components of the whole shape, in 608 Franches-Montagnes (FM) horses (480 stallions, 68 mares and 60 geldings born 1940–2018, 3–25 years old). The pedigree data comprised 6986 horses. Genetic variances and covariances were estimated by restricted maximum likelihood model (REML), including the fixed effects birth year, age (linear and quadratic), height at withers (linear and quadratic), as well as postural effects (head, neck, limb position and body alignment), together with a random additive genetic animal component and the residual effect. Estimated heritability varied from 0.08 (stifle joint) to 0.37 (poll). For the shape, the type was most heritable (0.36 to 0.37) and evolved from heavy to light over time. Image-based phenotyping can improve the selection of horses for conformation traits with moderate heritability (e.g., poll, shoulder and fetlock)

    Increased heterozygosity in low-pass sequencing data allows identification of blood chimeras in cattle.

    Get PDF
    In about 90% of multiple pregnancies in cattle, shared blood circulation between fetuses leads to genetic chimerism in peripheral blood and can reduce reproductive performance in heterosexual co-twins. However, the early detection of heterosexual chimeras requires specialized tests. Here, we used low-pass sequencing data with a median coverage of 0.64× generated from blood samples of 322 F1 crosses between beef and dairy cattle and identified 20 putative blood chimeras through increased levels of genome-wide heterozygosity. In contrast, for 77 samples with routine SNP microarray data generated from hair bulbs of the same F1s, we found no evidence of chimerism, simultaneously observing high levels of genotype discordance with sequencing data. Fifteen out of 18 reported twins showed signs of blood chimerism, in line with previous reports, whereas the presence of five alleged singletons with strong signs of chimerism suggests that the in-utero death rate of co-twins is at the upper limit of former estimates. Together, our results show that low-pass sequencing data allow reliable screening for blood chimeras. They further affirm that blood is not recommended as a source of DNA for the detection of germline variants

    Gait quality scoring data of Franches-Montagnes stallions at walk and trot on a treadmill by experts of the breed and their reliability

    Full text link
    This article presents the data obtained from the scoring of 24 stallions of the Franches-Montagnes (FM) horse breed by six experts of this breed. The experts scored six traits at walk and eight at trot from the video recordings of these stallions walking and trotting on a treadmill during an incremental speed test. The scores were given on a scale of one to nine. All experts scored the same videos twice (two scoring tests) with a time interval of two years, and without feedback from the first scoring. Video sequences were presented in a different order between first and second scoring. The inter- and intra-rater reliability of the data was assessed using intraclass correlation coefficients (ICC) to evaluate its quality

    Empirical comparison of microsatellite and SNP markers to estimate introgression in Apis mellifera mellifera

    Get PDF
    The genetic identity of the dark European honey bee, Apis mellifera mellifera is currently under pressure throughout most of its native range due to large scale commercial trade and replacement with honey bees of mainly Eastern European ancestry (C-lineage: Apis mellifera carnica and Apis mellifera ligustica). To counteract this process, numerous conservation efforts for the protection of native honey bees are sprouting across Europe. For the management of such protected areas and conservation breeding purposes, honey bee subspecies have been routinely identified through wing morphology and through DNA-hybrid tests using microsatellite markers. Currently, new methods are evolving including rapid innovations in single-nucleotide polymorphism (SNP) array technology and high-throughput sequencing. Here, we aim to quantify potential marker-specific biases of hybrid tests and give recommendations for applications in honey bee conservation management. Using an empirical dataset, we first assessed the accuracy of a recently developed reduced SNP panel to estimate C-lineage introgression in A. m. mellifera compared to whole-genome sequence (WGS) data. Using another independent data set, we estimated the differences in admixture proportions between the currently applied hybrid test based on microsatellites and the novel SNP test. We demonstrate that the SNP-based test which contains highly ancestry-informative markers is very efficient to estimate genome-wide ancestry. Furthermore, we report discrepancies between microsatellite and SNP-based admixture proportions. For conservation management, we, therefore, recommend the implementation of SNP-based hybrid tests to maintain high genetic variation within the breeding population, while minimizing influence of introduced honey bees.This work was supported by the Swiss Federal Office for Agriculture FOAG, the Fondation Sur-la-Croix, Basel, and by the 2013–2014 BiodivERsA/FACCE-JPI joint call for research proposals, with the national funders “Fundacžão para a CiĂȘncia e Tecnologia” (Portugal), “Agence Nationale de la Recherche” (France), and “Ministerio de EconomĂ­a y Competividad” (Spain).info:eu-repo/semantics/publishedVersio

    Determining Objective Parameters to Assess Gait Quality in Franches-Montagnes Horses for Ground Coverage and Over-Tracking - Part 2: At Trot

    Full text link
    In gait quality assessments of horses, stride length (SL) is visually associated with spectacular movements of the front limbs, and described as ground coverage, while the movement of the hind limb under the body is supposedly essential to a longer over-tracking distance (OTD). To identify movement patterns with strong associations to SL and OTD, limb and body kinematics of 24 Franches-Montagnes (FM) stallions were measured with 3D optical motion capture (OMC) on a treadmill during an incremental speed test at trot (3.3–6.5 m/s). These measurements were correlated to the scores of ground coverage and over-tracking from six breeding experts. The amount of explained variance of parameters on SL and OTD were estimated using linear mixed-effect models in two models: a full model with all parameters measurable with OMC, and a reduced model with a subset of parameters measurable with inertial measurement units (IMUs). The front limb stance duration (16%) and OTD (7%) measured with OMC, or the OMC parameters front limb stance duration (24%) and suspension duration (14%) measurable with IMUs explained most variance in SL. However, four of six breeding experts were also significantly correlated (r>|0.41|) to front limb protraction angle. OTD variance was explained with OMC parameters suspension duration (10%) and hind limb contralateral pro-retraction angles (9%) or IMU-measurable parameters suspension duration (20%) and maximal pelvis pitch (5%). Four experts’ scores for over-tracking were correlated to suspension duration. These results underscore the need for precise definitions of gait quality traits

    Determining Objective Parameters to Assess Gait Quality in Franches-Montagnes Horses for Ground Coverage and Over-Tracking - Part 1: At Walk

    Full text link
    Ground coverage and over-tracking are two gait quality traits describing the forward movement of the front respectively the hind limbs in relation to stride length and over-tracking distance. To investigate the complex interplay of different movement patterns in ground coverage and over-tracking, limb and body kinematics of 24 Franches-Montagnes (FM) stallions were measured with 3D optical motion capture (OMC) on a treadmill during an incremental speed test at the walk (1.4-2.0 m/s). The significance and amount of explained variance of kinematic parameters on stride length and over-tracking distance were estimated using linear mixed-effect models, with speed and horse as random effects. Two separate models were tested: a full model with all parameters measurable by OMC, and a reduced model with a subset of parameters also measurable with inertial measurement units (IMUs). The kinematic parameters were correlated to the subjective scores from six breeding experts to interpret their external validity. The parameter for ground coverage at the walk, explaining most of the variance in stride length, were the maximal forelimb retraction angle (11%) measured with OMC, and the range of pelvis pitch (10%) if measuring with IMUs. The latter was also the most relevant for quantifying over-tracking, explaining 24% to 33% of the variance in the over-tracking distance. The scores from most breeding experts were significantly correlated (r ≄ |0.41|) with the fore- and hind limb protraction angles, which reflect the textual definition of ground coverage and over-tracking. Both gait quality traits can be objectively quantified using either OMC or IMUs

    Inzucht beim Freiberger Pferd

    Get PDF

    Assignment of chromosomal locations for unassigned SNPs/scaffolds based on pair-wise linkage disequilibrium estimates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent developments of high-density SNP chips across a number of species require accurate genetic maps. Despite rapid advances in genome sequence assembly and availability of a number of tools for creating genetic maps, the exact genome location for a number of SNPs from these SNP chips still remains unknown. We have developed a locus ordering procedure based on linkage disequilibrium (LODE) which provides estimation of the chromosomal positions of unaligned SNPs and scaffolds. It also provides an alternative means for verification of genetic maps. We exemplified LODE in cattle.</p> <p>Results</p> <p>The utility of the LODE procedure was demonstrated using data from 1,943 bulls genotyped for 73,569 SNPs across three different SNP chips. First, the utility of the procedure was tested by analysing the masked positions of 1,500 randomly-chosen SNPs with known locations (50 from each chromosome), representing three classes of minor allele frequencies (MAF), namely >0.05, 0.01<MAF ≀ 0.05 and 0.001<MAF ≀ 0.01. The efficiency (percentage of masked SNPs that could be assigned a location) was 96.7%, 30.6% and 2.0%; with an accuracy (the percentage of SNPs assigned correctly) of 99.9%, 98.9% and 33.3% in the three classes of MAF, respectively. The average precision for placement of the SNPs was 914, 3,137 and 6,853 kb, respectively. Secondly, 4,688 of 5,314 SNPs unpositioned in the Btau4.0 assembly were positioned using the LODE procedure. Based on these results, the positions of 485 unordered scaffolds were determined. The procedure was also used to validate the genome positions of 53,068 SNPs placed on Btau4.0 bovine assembly, resulting in identification of problem areas in the assembly. Finally, the accuracy of the LODE procedure was independently validated by comparative mapping on the hg18 human assembly.</p> <p>Conclusion</p> <p>The LODE procedure described in this study is an efficient and accurate method for positioning SNPs (MAF>0.05), for validating and checking the quality of a genome assembly, and offers a means for positioning of unordered scaffolds containing SNPs. The LODE procedure will be helpful in refining genome sequence assemblies, especially those being created from next-generation sequencing where high-throughput SNP discovery and genotyping platforms are integrated components of genome analysis.</p

    New genomic insights into the conformation of Lipizzan horses

    Get PDF
    Conformation traits are important selection criteria in equine breeding, as they describe the exterior aspects of the horse (height, joint angles, shape). However, the genetic architecture of conformation is not well understood, as data of these traits mainly consist of subjective evaluation scores. Here, we performed genome-wide association studies on two-dimensional shape data of Lipizzan horses. Based on this data, we identified significant quantitative trait loci (QTL) associated with cresty neck on equine chromosome (ECA)16 within the MAGI1 gene, and with type, hereby differentiating heavy from light horses on ECA5 within the POU2F1 gene. Both genes were previously described to affect growth, muscling and fatty deposits in sheep, cattle and pigs. Furthermore, we pin-pointed another suggestive QTL on ECA21, near the PTGER4 gene, associated with human ankylosing spondylitis, for shape differences in the back and pelvis (roach back vs sway back). Further differences in the shape of the back and abdomen were suggestively associated with the RYR1 gene, involved in core muscle weakness in humans. Therefore, we demonstrated that horse shape space data enhance the genomic investigations of horse conformation
    • 

    corecore