30 research outputs found

    Local Uniqueness of the Circular Integral Invariant

    Full text link
    This article is concerned with the representation of curves by means of integral invariants. In contrast to the classical differential invariants they have the advantage of being less sensitive with respect to noise. The integral invariant most common in use is the circular integral invariant. A major drawback of this curve descriptor, however, is the absence of any uniqueness result for this representation. This article serves as a contribution towards closing this gap by showing that the circular integral invariant is injective in a neighbourhood of the circle. In addition, we provide a stability estimate valid on this neighbourhood. The proof is an application of Riesz-Schauder theory and the implicit function theorem in a Banach space setting

    Optical Flow on Moving Manifolds

    Full text link
    Optical flow is a powerful tool for the study and analysis of motion in a sequence of images. In this article we study a Horn-Schunck type spatio-temporal regularization functional for image sequences that have a non-Euclidean, time varying image domain. To that end we construct a Riemannian metric that describes the deformation and structure of this evolving surface. The resulting functional can be seen as natural geometric generalization of previous work by Weickert and Schn\"orr (2001) and Lef\`evre and Baillet (2008) for static image domains. In this work we show the existence and wellposedness of the corresponding optical flow problem and derive necessary and sufficient optimality conditions. We demonstrate the functionality of our approach in a series of experiments using both synthetic and real data.Comment: 26 pages, 6 figure

    Multi-parameter Tikhonov Regularisation in Topological Spaces

    Full text link
    We study the behaviour of Tikhonov regularisation on topological spaces with multiple regularisation terms. The main result of the paper shows that multi-parameter regularisation is well-posed in the sense that the results depend continuously on the data and converge to a true solution of the equation to be solved as the noise level decreases to zero. Moreover, we derive convergence rates in terms of a generalised Bregman distance using the method of variational inequalities. All the results in the paper, including the convergence rates, consider not only noise in the data, but also errors in the operator
    corecore