43 research outputs found

    Oroxylum indicum Seeds—Analysis of Flavonoids by Micellar Electrokinetic Chromatography

    No full text
    Flavonoids are bioactive constituents in Oroxylum indicum seeds, an Asian traditional remedy used for the treatment of respiratory infections. In this study the first capillary electrophoretic method for their determination is presented. By using a 25 mM borax buffer at pH 9.2 containing 10 mM SDS as detergent, the determination of seven flavonoids was feasible in only 13 min. Method validation confirmed that the assay is in accordance with ICH requirements in respect to linearity, selectivity, sensitivity, accuracy and precision. Quantitative results revealed that baicalein-7-O-gentiobioside is the most abundant flavonoid in the drug (1.19 to 5.33%), followed by other baicalein derivatives (7-O-glucoside, 7-O-glucuronide). These observations were in good qualitative and quantitative agreement with LC-MS results

    Efficient Isolation of Mycosporine-Like Amino Acids from Marine Red Algae by Fast Centrifugal Partition Chromatography

    No full text
    Marine rhodophyta are known to synthesize specific secondary metabolites, mycosporine-like amino acids (MAAs), to protect themselves from harmful UV-radiation. Shinorine and porphyra-334 are among the most abundant representatives of this compound class. In the present work, a novel approach for their isolation is described. As a first step, a fast centrifugal partition chromatography method, with an aqueous two-phase system comprising water, ethanol, ammonium sulfate and methanol in ascending mode, was developed to isolate the two MAAs from crude aqueous-methanolic extracts of three algal species within 90 min. The compounds could be isolated when just one of them was present in a sample or also both at the same time. By employing solid phase extraction as a second purification step, the individual MAAs were obtained in high purity and good quantity within a much shorter time frame than the established purification protocols, e.g., semi-preparative HPLC. For example, from 4 g Porphyra sp. (Nori) crude extract, 15.7 mg shinorine and 36.2 mg porphyra-334 were isolated. Both were highly pure, as confirmed by TLC, HPLC-MS and NMR analyses

    Effects of elevated ultraviolet radiation on primary metabolites in selected alpine algae and cyanobacteria

    Get PDF
    AbstractExtremophilic green algae and cyanobacteria are the most abundant species in high mountain habitats, where rough climate conditions such as temperature differences, limited water retention and high ultraviolet (UV) radiation are the cause for a restricted biological diversity in favor of a few specialized autotrophic microorganisms. In this study, we investigated four algal species from alpine habitat in a sun simulator for their defense strategies in response to UV-A radiation (315–400nm) up to 13.4W/m2 and UV-B radiation (280–315nm) up to 2.8W/m2. Besides changes in pigment composition we discovered that primary polar metabolites like aromatic amino acids, nucleic bases and nucleosides are increasingly produced when the organisms are exposed to elevated UV radiation. Respective compounds were isolated and identified, and in order to quantify them an HPLC-DAD method was developed and validated. Our results show that especially tyrosine and guanosine were found to be generally two to three times upregulated in the UV-B exposed samples compared to the non-treated control

    SFC and CE—A Comparison of Two Orthogonal Methods for the Analysis of Dihydrochalcones in Apple Leaves

    No full text
    In recent years the analysis of natural products has been carried out using a range of approaches, but mainly utilizing liquid chromatography (LC) or gas chromatography (GC). However, alternative approaches with orthogonal selectivity like capillary electrophoresis (CE) and supercritical fluid chromatography (SFC) have increasingly been employed as well, even though they are often considered niche techniques only. In this study, we intended to confirm and compare their suitability as reliable state-of-the-art methods for the analysis of bioactive compounds by developing CE and SFC for the analysis of dihydrochalcones (DHCs) in apple leaves. The analytes were chosen as they have shown interesting pharmacological effects, such as anti-inflammatory, anti-tumor and immunomodulatory activities, and also present an interesting analytical challenge due to their structural similarity and polarity range. Both methods were well capable to separate the five standard compounds within short separation times and fulfilling the demands for an environmentally friendly “green” technology. CE as well as the SFC assay were validated for linearity, sensitivity, accuracy and precision according to ICH guidelines and met all respective requirements. Using the optimized methods, several Malus sp. samples were analyzed whereby a significant difference in the qualitative as well as quantitative DHC profile was revealed, with overall DHC concentrations ranging from 5.47% to 17.24%

    Analysis of Mycosporine-Like Amino Acids in Selected Algae and Cyanobacteria by Hydrophilic Interaction Liquid Chromatography and a Novel MAA from the Red Alga Catenella repens

    No full text
    Mycosporine-like amino acids (MAAs), a group of small secondary metabolites found in algae, cyanobacteria, lichens and fungi, have become ecologically and pharmacologically relevant because of their pronounced UV-absorbing and photo-protective potential. Their analytical characterization is generally achieved by reversed phase HPLC and the compounds are often quantified based on molar extinction coefficients. As an alternative approach, in our study a fully validated hydrophilic interaction liquid chromatography (HILIC) method is presented. It enables the precise quantification of several analytes with adequate retention times in a single run, and can be coupled directly to MS. Excellent linear correlation coefficients (R2 > 0.9991) were obtained, with limit of detection (LOD) values ranging from 0.16 to 0.43 µg/mL. Furthermore, the assay was found to be accurate (recovery rates from 89.8% to 104.1%) and precise (intra-day precision: 5.6%, inter-day precision ≤6.6%). Several algae were assayed for their content of known MAAs like porphyra-334, shinorine, and palythine. Liquid chromatography-mass spectrometry (LC-MS) data indicated a novel compound in some of them, which could be isolated from the marine species Catenella repens and structurally elucidated by nuclear magnetic resonance spectroscopy (NMR) as (E)-3-hydroxy-2-((5-hydroxy-5-(hydroxymethyl)-2-methoxy-3-((2-sulfoethyl)amino)cyclohex-2-en-1-ylidene)amino) propanoic acid, a novel MAA called catenelline

    Phytochemical and Analytical Characterization of Novel Sulfated Coumarins in the Marine Green Macroalga <i>Dasycladus vermicularis</i> (Scopoli) Krasser

    No full text
    The siphonous green algae form a morphologically diverse group of marine macroalgae which include two sister orders (Bryopsidales and Dasycladales) which share a unique feature among other green algae as they are able to form large, differentiated thalli comprising of a single, giant tubular cell. Upon cell damage a cascade of protective mechanisms have evolved including the extrusion of sulfated metabolites which are involved in the formation of a rapid wound plug. In this study, we investigated the composition of sulfated metabolites in Dasycladus vermicularis (Dasycladales) which resulted in the isolation of two phenolic acids and four coumarins including two novel structures elucidated by nuclear magnetic resonance spectroscopy (NMR) as 5,8&#8242;-di-(6(6&#8242;),7(7&#8242;)-tetrahydroxy-3-sulfoxy-3&#8242;-sulfoxycoumarin), a novel coumarin called dasycladin A and 7-hydroxycoumarin-3,6-disulfate, which was named dasycladin B. In addition, an analytical assay for the chromatographic quantification of those compounds was developed and performed on a reversed phase C-18 column. Method validation confirmed that the new assay shows good linearity (R2 &#8805; 0.9986), precision (intra-day R.S.D &#8804; 3.71%, inter-day R.S.D &#8804; 7.49%), and accuracy (recovery rates ranged from 104.06 to 97.45%). The analysis of several samples of Dasycladus vermicularis from different collection sites, water depths and seasons revealed differences in the coumarin contents, ranging between 0.26 to 1.61%

    Immunomodulatory Effects of the Mycosporine-Like Amino Acids Shinorine and Porphyra-334

    No full text
    Mycosporine-like amino acids (MAAs) are secondary metabolites, produced by a large variety of microorganisms including algae, cyanobacteria, lichen and fungi. MAAs act as UV-absorbers and photo-protectants. MAAs are suggested to exert pharmaceutical relevant bioactivities in the human system. We particularly focused on their effect on defence and regulatory pathways that are active in inflamed environments. The MAAs shinorine and porphyra-334 were isolated and purified from the red algae Porphyra sp. using chromatographic methods. The effect of MAAs on central signaling cascades, such as transcription factor nuclear factor kappa b (NF-κB) activation, as well as tryptophan metabolism, was investigated in human myelomonocytic THP-1 and THP-1-Blue cells. Cells were exposed to the MAAs in the presence or absence of lipopolysaccharide (LPS). NF-κB activity and the activity of tryptophan degrading enzyme indoleamine 2,3-dioxygenase (IDO-1) were used as readout. Compounds were tested in the concentration range from 12.5 to 200 µg/mL. Both MAAs were able to induce NF-κB activity in unstimulated THP-1-Blue cells, whereby the increase was dose-dependent and more pronounced with shinorine treatment. While shinorine also slightly superinduced NF-κB in LPS-stimulated cells, porphyra-334 reduced NF-κB activity in this inflammatory background. Modulation of tryptophan metabolism was moderate, suppressive in stimulated cells with the lower treatment concentration of both MAAs and with the unstimulated cells upon porphyra-334 treatment. Inflammatory pathways are affected by MAAs, but despite the structural similarity, diverse effects were observed

    Shoot proliferation and HPLC-determination of iridoid glycosides in clones of Gentiana cruciata L

    No full text
    WOS: 000294910600018Gentiana cruciata L. (Cross gentian) is a medicinal and ornamental plant, threatened in its natural habitats. The wild root extracts of this species are known to exhibit many curative properties. In the present study, an efficient protocol for in vitro propagation of G. cruciata L. was developed from node culture. A semi-solidified Murashige and Skoog (MS) basal medium supplemented with 2.22 mu M 6-benzyladenine (BA), 2.46 mu M indole-3-butyric acid (IBA) and sucrose (3% w/v) improved the production of multiple shoots directly from nodal segments, providing 3.9 shoots per explants on average. The highest rooting (81.7%) was observed with half-strength MS medium supplemented with 2.46 mu M IBA. Plants with well-developed roots were transferred to pots containing turf/vermiculite mixtures and acclimatized in plant growth chamber conditions. Acclimatized plants showed 100% survival and remained healthy. The content of secondary metabolites in the clones was determined by HPLC, and the presence of gentiopicroside, loganic acid, swertiamarin, and sweroside in the samples was confirmed. Gentiopicroside was found to be the major compound.Scientific and Technological Research Council of TurkeyTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [TUBITAK-TOVAG 106O111]; Ege University Scientific Research Projects CommissionEge University [05MUH016]This research is sponsored by The Scientific and Technological Research Council of Turkey (TUBITAK-TOVAG 106O111) and Ege University Scientific Research Projects Commission (05MUH016). The authors are also grateful to Dr. Serdar Gokhan SENOL for providing wild plant material
    corecore