24 research outputs found

    Low-frequency sound processing by the human inner ear

    Get PDF

    Synchronization of a Nonlinear Oscillator: Processing the Cf Component of the Echo-Response Signal in the Cochlea of the Mustached Bat

    Get PDF
    Cochlear microphonic potential (CM) was recorded from the CF2 region and the sparsely innervated zone (the mustached bat's cochlea fovea) that is specialized for analyzing the Doppler-shifted echoes of the first-harmonic (~61 kHz) of the constant-frequency component of the echolocation call. Temporal analysis of the CM, which is tuned sharply to the 61 kHz cochlear resonance, revealed that at the resonance frequency, and within 1 msec of tone onset, CM is broadly tuned with linear magnitude level functions. CM measured during the ongoing tone and in the ringing after tone offset is 50 dB more sensitive, is sharply tuned, has compressive level functions, and the phase leads onset CM by 90°: an indication that cochlear responses are amplified during maximum basilar membrane velocity. For high-level tones above the resonance frequency, CM appears at tone onset and after tone offset. Measurements indicate that the two oscillators responsible for the cochlear resonance, presumably the basilar and tectorial membranes, move together in phase during the ongoing tone, thereby minimizing net shear between them and hair cell excitation. For tones within 2 kHz of the cochlear resonance the frequency of CM measured within 2 msec of tone onset is not that of the stimulus but is proportional to it. For tones just below the cochlear resonance region CM frequency is a constant amount below that of the stimulus depending on CM measurement delay from tone onset. The frequency responses of the CM recorded from the cochlear fovea can be accounted for through synchronization between the nonlinear oscillators responsible for the cochlear resonance and the stimulus tone

    The Development of a Single Frequency Place in the Mammalian Cochlea: The Cochlear Resonance in the Mustached Bat Pteronotus parnellii

    Get PDF
    Cochlear microphonic potentials (CMs) were recorded from the sharply tuned, strongly resonant auditory foveae of 1- to 5-week-old mustached bats that were anesthetized with Rompun and Ketavet. The fovea processes Doppler-shifted echo responses of the constant-frequency component of echolocation calls. During development, the frequency and tuning sharpness of the cochlear resonance increases, and CM ringing persists for longer after the tone. CM is relatively insensitive at tone onset and grows linearly with increased stimulus level. During the tone, the CM is more sensitive and grows compressively with increased stimulus level and phase leads onset CM by 90° for frequencies below the resonance. CM during the ringing is also sensitive and compressive and phase leads onset CM by 180° below the resonance and lags it by 180° above the resonance. Throughout postnatal development, CMs measured during the tone and in the ringing increase both in sensitivity and compression. The cochlear resonance appears to be attributable to interaction between two oscillators. The more broadly tuned oscillator dominates the onset response, and the narrowly tuned oscillator dominates the ringing. Early in development, mechanical coupling between the oscillators results in a relatively broadly tuned system with several frequency modes in the CM at tone onset and in the CM ringing. Beating occurs between the resonance and the stimulus response during the tone and between two components of the narrowly tuned oscillator at tone offset. At maturity, the CM has three modes for frequencies within 10 kHz of the resonance at tone onset and a single, sharply tuned mode in the ringing

    Das efferente System und die cochleäre Mikromechanik der Schnurrbartfledermaus

    Get PDF

    Low-frequency sound processing by the human inner ear

    Get PDF

    Tinnitus in Normal-Hearing Participants after Exposure to Intense Low-Frequency Sound and in Meniere's Disease Patients

    Get PDF
    Tinnitus is one of the three classical symptoms of Meniere's disease (MD), an inner ear disease that is often accompanied by endolymphatic hydrops. Previous studies indicate that tinnitus in MD patients is dominated by low frequencies, whereas tinnitus in non-hydropic pathologies is typically higher in frequency. Tinnitus of rather low-frequency (LF) quality was also reported to occur for about 90 s in normal-hearing participants after presentation of intense, LF sound (120 dB SPL, 30 Hz, 90 s). LF sound has been demonstrated to also cause temporary endolymphatic hydrops in animal models. Here, we quantify tinnitus in two study groups with chronic (MD patients) and presumably transient endolymphatic hydrops (normal-hearing participants after LF exposure) with a psychophysical procedure. Participants matched their tinnitus either with a pure tone of adjustable frequency and level or with a noise of adjustable spectral shape and level. Sensation levels of matching stimuli were lower for MD patients (mean: 8 dB SL) than for normal-hearing participants (mean: 15 dB SL). Transient tinnitus after LF-exposure occurred in all normal-hearing participants (N = 28). About half of the normal-hearing participants matched noise to their tinnitus, the other half chose a pure tone with frequencies below 2 kHz. MD patients matched their tinnitus with either high-frequency pure tones, mainly above 3 kHz, or with a noise. Despite a significant proportion of MD patients matching low-pass (roaring) noises to their tinnitus, the range of matched stimuli was more heterogeneous than previous data suggested. We propose that in those participants with noise-like tinnitus, the percept is probably generated by increased spontaneous activity of auditory nerve fibers with a broad range of characteristic frequencies, due to an impaired ion balance in the cochlea. For tonal tinnitus, additional mechanisms are conceivable: focal hair cell loss can result in decreased auditory nerve firing and a central auditory overcompensation. Also, normal-hearing participants after LF-exposure experience alterations in spontaneous otoacoustic emissions, which may contribute to a transient tonal tinnitus

    Low-frequency sound affects active micromechanics in the human inner ear

    Get PDF
    Noise-induced hearing loss is one of the most common auditory pathologies, resulting from overstimulation of the human cochlea, an exquisitely sensitive micromechanical device. At very low frequencies (less than 250 Hz), however, the sensitivity of human hearing, and therefore the perceived loudness is poor. The perceived loudness is mediated by the inner hair cells of the cochlea which are driven very inadequately at low frequencies. To assess the impact of low-frequency (LF) sound, we exploited a by-product of the active amplification of sound outer hair cells (OHCs) perform, so-called spontaneous otoacoustic emissions. These are faint sounds produced by the inner ear that can be used to detect changes of cochlear physiology. We show that a short exposure to perceptually unobtrusive, LF sounds significantly affects OHCs: a 90 s, 80 dB(A) LF sound induced slow, concordant and positively correlated frequency and level oscillations of spontaneous otoacoustic emissions that lasted for about 2 min after LF sound offset. LF sounds, contrary to their unobtrusive perception, strongly stimulate the human cochlea and affect amplification processes in the most sensitive and important frequency range of human hearing

    Cochlear sensitivity in the lesser spear-nosed bat, Phyllostomus discolor

    No full text
    No description supplie
    corecore