3,225 research outputs found

    Optical Flow on Moving Manifolds

    Full text link
    Optical flow is a powerful tool for the study and analysis of motion in a sequence of images. In this article we study a Horn-Schunck type spatio-temporal regularization functional for image sequences that have a non-Euclidean, time varying image domain. To that end we construct a Riemannian metric that describes the deformation and structure of this evolving surface. The resulting functional can be seen as natural geometric generalization of previous work by Weickert and Schn\"orr (2001) and Lef\`evre and Baillet (2008) for static image domains. In this work we show the existence and wellposedness of the corresponding optical flow problem and derive necessary and sufficient optimality conditions. We demonstrate the functionality of our approach in a series of experiments using both synthetic and real data.Comment: 26 pages, 6 figure

    GPU Accelerated Explicit Time Integration Methods for Electro-Quasistatic Fields

    Full text link
    Electro-quasistatic field problems involving nonlinear materials are commonly discretized in space using finite elements. In this paper, it is proposed to solve the resulting system of ordinary differential equations by an explicit Runge-Kutta-Chebyshev time-integration scheme. This mitigates the need for Newton-Raphson iterations, as they are necessary within fully implicit time integration schemes. However, the electro-quasistatic system of ordinary differential equations has a Laplace-type mass matrix such that parts of the explicit time-integration scheme remain implicit. An iterative solver with constant preconditioner is shown to efficiently solve the resulting multiple right-hand side problem. This approach allows an efficient parallel implementation on a system featuring multiple graphic processing units.Comment: 4 pages, 5 figure

    Parallel-In-Time Simulation of Eddy Current Problems Using Parareal

    Full text link
    In this contribution the usage of the Parareal method is proposed for the time-parallel solution of the eddy current problem. The method is adapted to the particular challenges of the problem that are related to the differential algebraic character due to non-conducting regions. It is shown how the necessary modification can be automatically incorporated by using a suitable time stepping method. The paper closes with a first demonstration of a simulation of a realistic four-pole induction machine model using Parareal

    Multiple Right-Hand Side Techniques in Semi-Explicit Time Integration Methods for Transient Eddy Current Problems

    Full text link
    The spatially discretized magnetic vector potential formulation of magnetoquasistatic field problems is transformed from an infinitely stiff differential algebraic equation system into a finitely stiff ordinary differential equation (ODE) system by application of a generalized Schur complement for nonconducting parts. The ODE can be integrated in time using explicit time integration schemes, e.g. the explicit Euler method. This requires the repeated evaluation of a pseudo-inverse of the discrete curl-curl matrix in nonconducting material by the preconditioned conjugate gradient (PCG) method which forms a multiple right-hand side problem. The subspace projection extrapolation method and proper orthogonal decomposition are compared for the computation of suitable start vectors in each time step for the PCG method which reduce the number of iterations and the overall computational costs.Comment: 4 pages, 5 figure

    Electron-Plasmon scattering in chiral 1D systems with nonlinear dispersion

    Get PDF
    We investigate systems of spinless one-dimensional chiral fermions realized, e.g., in the arms of electronic Mach-Zehnder interferometers, at high energies. Taking into account the curvature of the fermionic spectrum and a finite interaction range, we find a new scattering mechanism where high-energy electrons scatter off plasmons (density excitations). This leads to an exponential decay of the single-particle Green's function even at zero temperature with an energy-dependent rate. As a consequence of this electron-plasmon scattering channel, we observe the coherent excitation of a plasmon wave in the wake of a high-energy electron resulting in the buildup of a monochromatic sinusoidal density pattern.Comment: 5 pages, 3 figures; version as publishe

    Yolk formation in crustacean eggs

    Get PDF
    • …
    corecore