11 research outputs found

    Chlorophyll and Chlorophyll Derivatives Interfere with Multi-Drug Resistant Cancer Cells and Bacteria

    No full text
    Multidrug resistance (MDR) causes challenging tasks in medicine. Human cancer cells, as well as microorganisms, can acquire multiresistance due to the up-regulation of efflux pumps (ABC transporters) and are difficult to treat. Here, we evaluated the effects of chlorophyll, the most abundant pigment on the globe, and its derivative, pheophytin, on cancer cells and methicillin-resistant Staphylococcus aureus (MRSA). We found that both substances have significant reversal effects on multidrug-resistant CEM/ADR5000 cells (RRpheophytin = 3.13, combination index (CI)pheophytin = 0.438; RRchlorophyll = 2.72, CIchlorophyll < 0.407), but not on drug-sensitive CCRF-CEM cells when used in combination with doxorubicin. This indicates that the porphyrins could interact with efflux pumps. Strong synergism was also observed in antimicrobial tests against MRSA when combining ethidium bromide with chlorophyll (FICI = 0.08). As there is a strong need for new drugs in order to reliably treat MDR cells, our research provides potential candidates for further investigation

    Recombinant AfusinC, an anionic fungal CSαβ defensin from Aspergillus fumigatus, exhibits antimicrobial activity against gram-positive bacteria.

    No full text
    Antimicrobial peptides (AMPs) are short and generally positively charged peptides found in a wide variety of organisms. CSαβ defensins are a group of AMPs. These defensins are composed of an α-helix and a β-sheet linked by three or four disulphide bridges. In this study, we describe the antimicrobial activity of an anionic CSαβ fungal defensin from Aspergillus fumigatus, AfusinC. AfusinC was recombinantly produced as a fusion protein in Escherichia coli. The tag was removed by proteolytic cleavage, and AfusinC was purified by size exclusion chromatography. About 0.8 mg of recombinant AfusinC was obtained from 1 L of culture. Recombinant AfusinC was active against mainly gram-positive bacteria including human pathogens and a multiresistant-strain of A. aureus. Additionally, AfusinC showed bactericidal effect against Micrococcus luteus

    Tulbaghia violacea and Allium ursinum Extracts Exhibit Anti-Parasitic and Antimicrobial Activities

    No full text
    Garlic has played an important role in culinary arts and remedies in the traditional medicine throughout human history. Parasitic infections represent a burden in the society of especially poor countries, causing more than 1 billion infections every year and leading to around one million deaths. In this study, we investigated the mode of anti-parasitic activity of “wild garlics” Tulbaghia violacea and Allium ursinum dichloromethane extracts against parasites Trypanosoma brucei brucei and Leishmania tarentolae with regard to their already known antimicrobial activity. We also evaluated their cytotoxic potential against human cells. Both extracts showed a relevant trypanocidal and leishmanicidal activity, although L. tarentolae was less sensitive. We determined that the probable mode of action of both extracts is the irreversible inhibition of the activity of Trypanosoma brucei trypanothione reductase enzyme. The extracts showed a mild cytotoxic activity against human keratinocytes. They also exhibited weak—in most cases comparable—antibacterial and antifungal activity. HPLC-MS/MS analysis showed that both extracts are abundant in sulfur compounds. Thus, for the first time, the ability of Allium ursinum and Tulbaghia violacea to kill Trypanosoma sp. and Leishmania sp. parasites, probably by binding to and inactivating sulfur-containing compounds essential for the survival of the parasite, is shown

    Anti-Parasitic Activities of Allium sativum and Allium cepa against Trypanosoma b. brucei and Leishmania tarentolae

    No full text
    Background: Garlics and onions have been used for the treatment of diseases caused by parasites and microbes since ancient times. Trypanosomiasis and leishmaniasis are a concern in many areas of the world, especially in poor countries. Methods: Trypanosoma brucei brucei and Leishmania tarentolae were used to investigate the anti-parasitic effects of dichloromethane extracts of Allium sativum (garlic) and Allium cepa (onion) bulbs. As a confirmation of known antimicrobial activities, they were studied against a selection of G-negative, G-positive bacteria and two fungi. Chemical analyses were performed using high-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (LC-ESI-MS/MS). Results: Chemical analyses confirmed the abundance of several sulfur secondary metabolites in garlic and one (zwiebelane) in the onion extract. Both extracts killed both types of parasites efficiently and inhibited the Trypanosoma brucei trypanothione reductase irreversibly. In addition, garlic extract decreased the mitochondrial membrane potential in trypanosomes. Garlic killed the fungi C. albicans and C. parapsilosis more effectively than the positive control. The combinations of garlic and onion with common trypanocidal and leishmanicidal drugs resulted in a synergistic or additive effect in 50% of cases. Conclusion: The mechanism for biological activity of garlic and onion appears to be related to the amount and the profile of sulfur-containing compounds. It is most likely that vital substances inside the parasitic cell, like trypanothione reductase, are inhibited through disulfide bond formation between SH groups of vital redox compounds and sulfur-containing secondary metabolites

    Antioxidant, Cytotoxic, and Antimicrobial Activities of <i>Glycyrrhiza glabra</i> L., <i>Paeonia lactiflora</i> Pall., and <i>Eriobotrya japonica</i> (Thunb.) Lindl. Extracts

    No full text
    Background: The phytochemical composition, antioxidant, cytotoxic, and antimicrobial activities of a methanol extract from Glycyrrhiza glabra L. (Ge), a 50% ethanol (in water) extract from Paeonia lactiflora Pall. (Pe), and a 96% ethanol extract from Eriobotrya japonica (Thunb.) Lindl. (Ue) were investigated. Methods: The phytochemical profiles of the extracts were analyzed by LC-MS/MS. Antioxidant activity was evaluated by scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2&#8242;-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals and reducing ferric complexes, and the total phenolic content was tested with the Folin&#8211;Ciocalteu method. Cytotoxicity was determined with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in murine macrophage RAW 264.7 cells. Antimicrobial activity of the three plant extracts was investigated against six bacterial strains with the broth microdilution method. Results: Only Pe showed high antioxidant activities compared to the positive controls ascorbic acid and (&#8722;)-epigallocatechin gallate (EGCG) in DPPH assay; and generally the antioxidant activity order was ascorbic acid or EGCG &gt; Pe &gt; Ue &gt; Ge. The three plant extracts did not show strong cytotoxicity against RAW 264.7 cells after 24 h treatment with IC50 values above 60.53 &#177; 4.03 &#956;g/mL. Ue was not toxic against the six tested bacterial strains, with minimal inhibitory concentration (MIC) values above 5 mg/mL. Ge showed medium antibacterial activity against Acinetobacter bohemicus, Kocuria kristinae, Micrococcus luteus, Staphylococcus auricularis, and Bacillus megaterium with MICs between 0.31 and 1.25 mg/mL. Pe inhibited the growth of Acinetobacter bohemicus, Micrococcus luteus, and Bacillus megaterium at a MIC of 0.08 mg/mL. Conclusions: The three extracts were low-cytotoxic, but Pe exhibited effective DPPH radical scavenging ability and good antibacterial activity; Ue did not show antioxidant or antibacterial activity; Ge had no antioxidant potential, but medium antibacterial ability against five bacteria strains. Pe and Ge could be further studied for their potential to be developed as antioxidant or antibacterial candidates

    Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Essential Oils of Selected Aromatic Plants from Tajikistan

    No full text
    Antimicrobial, antioxidant, and anti-inflammatory activities of the essential oils of 18 plant species from Tajikistan (Central Asia) were investigated. The essential oil of Origanum tyttanthum showed a strong antibacterial activity with both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 312.5 µg/mL for E. coli, 625 µg/mL (MIC) and 1250 µg/mL (MBC) for MRSA (methicillin-resistant Staphylococcus aureus), respectively. The essential oil of Galagania fragrantissima was highly active against MRSA at concentrations as low as 39.1 µg/mL and 78.2 µg/mL for MIC and MBC, respectively. Origanum tyttanthum essential oil showed the highest antioxidant activity with IC50 values of 0.12 mg/mL for ABTS (2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)) and 0.28 mg/mL for DPPH (2,2-diphenyl-1-picrylhydrazyl). Galagania fragrantissima and Origanum tyttanthum essential oils showed the highest anti-inflammatory activity; IC50 values of 5-lipoxygenase (5-LOX) inhibition were 7.34 and 14.78 µg/mL, respectively. In conclusion, essential oils of Origanum tyttanthum and Galagania fragrantissima exhibit substantial antimicrobial, antioxidant, and anti-inflammatory activities. They are interesting candidates in phytotherapy

    Can Mitogenomes of the Northern Wheatear (Oenanthe oenanthe) Reconstruct Its Phylogeography and Reveal the Origin of Migrant Birds?

    Get PDF
    The Northern Wheatear (Oenanthe oenanthe, including the nominate and the two subspecies O. o. leucorhoa and O. o. libanotica) and the Seebohm's Wheatear (Oenanthe seebohmi) are today regarded as two distinct species. Before, all four taxa were regarded as four subspecies of the Northern Wheatear. Their classification has exclusively been based on ecological and morphological traits, while their molecular characterization is still missing. With this study, we used next-generation sequencing to assemble 117 complete mitochondrial genomes covering O. o. oenanthe, O. o. leucorhoa and O. seebohmi. We compared the resolution power of each individual mitochondrial marker and concatenated marker sets to reconstruct the phylogeny and estimate speciation times of three taxa. Moreover, we tried to identify the origin of migratory wheatears caught on Helgoland (Germany) and on Crete (Greece). Mitogenome analysis revealed two different ancient lineages that separated around 400,000 years ago. Both lineages consisted of a mix of subspecies and species. The phylogenetic trees, as well as haplotype networks are incongruent with the present morphology-based classification. Mitogenome could not distinguish these presumed species. The genetic panmixia among present populations and taxa might be the consequence of mitochondrial introgression between ancient wheatear populations

    Calycophyllum spruceanum (Benth.), the Amazonian “Tree of Youth” Prolongs Longevity and Enhances Stress Resistance in Caenorhabditis elegans

    No full text
    The tree popularly known in Brazil as mulateiro or pau-mulato (Calycophyllum spruceanum (Benth.) K. Schum.) is deeply embedded in the herbal medicine of the Amazon region. Different preparations of the bark are claimed to have anti-aging, antioxidant, antimicrobial, emollient, wound healing, hemostatic, contraceptive, stimulant, and anti-diabetic properties. The current study aims to provide the first step towards a science-based evidence of the beneficial effects of C. spruceanum in the promotion of longevity and in the modulation of age-related markers. For this investigation, we used the model system Caenorhabditis elegans to evaluate in vivo antioxidant and anti-aging activity of a water extract from C. spruceanum. To chemically characterize the extract, HPLC MS (High Performance Liquid Chromatography Mass Spectrometry)/MS analyses were performed. Five secondary metabolites were identified in the extract, namely gardenoside, 5-hydroxymorin, cyanidin, taxifolin, and 5-hydroxy-6-methoxycoumarin-7-glucoside. C. spruceanum extract was able to enhance stress resistance and to extend lifespan along with attenuation of aging-associated markers in C. elegans. The demonstrated bioactivities apparently depend on the DAF-16/FOXO pathway. The data might support the popular claims of mulateiro as the “tree of youth”, however more studies are needed to clarify its putative benefits to human health
    corecore