11 research outputs found

    Investigating Mexican paleoclimate with precisely dated speleothems

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2020.Speleothems, or sedimentary rocks formed in caves, act as valuable archives of past climate change due to their suitability for U-series dating and high-resolution proxy analysis. These records can provide insights into water availability and controls on hydrology prior to the instrumental record. In this thesis, I present three records from newly-analyzed Mexican stalagmites using stable isotope (oxygen and carbon) and trace element to calcium (Mg/Ca and Sr/Ca) ratios as proxies for changing hydroclimate. Chapter 2 presents a precisely dated, mid-Holocene record of high rainfall and limited precipitation variability in the Yucatan Peninsula, Mexico. Chapters 3 and 4 present novel climate records from northeastern Mexico, an understudied region of North America. Both records come from cave sites within the Mexican arid zone, which is simultaneously experiencing increased water scarcity and a rapidly growing population. In Chapter 3, I examine a speleothem from the first millennium of the Common Era, which showed that there is a precipitation dipole between northern and southern Mexico. Chapter 4 highlights, for the first time at decadal resolution, the northeast Mexican response to the 8.2 ka event and the Younger Dryas. These chapters show that the San Luis Potosí region is vulnerable to droughts under multiple climate mean states, and is subject to drying as Atlantic Meridional Overturning Circulation weakens due to anthropogenic climate change. The climate records detailed in this thesis improve our understanding of controls on Mexican hydroclimate and can serve as benchmarks for climate models.This work was funded by US National Science Foundation (NSF) grants AGS-1702848 (M. Medina-Elizalde), AGS–1502877 (S. Burns), AGS-1804512 and AGS-1806090 (K. Johnson and D. McGee). I was also supported by the NSF Graduate Research Fellowship and the MIT School of Science Dean’s Fellowship. Fieldwork and analysis were funded by the WHOI Ocean Ventures Fund, the MIT EAPS Student Research Fund, and the MIT International Science and Technology Initiatives (MISTI) Mexico program. Initial work for this project was also supported by UC MEXUS-CONACYT Collaborative Grant from the University of California Institute for Mexico and the United States (UC MEXUS CN-16-120). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation

    Reproducibility of Ba/Ca variations recorded by northeast Pacific bamboo corals

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 32 (2017): 966–979, doi:10.1002/2017PA003178.Trace elemental ratios preserved in the calcitic skeleton of bamboo corals have been shown to serve as archives of past ocean conditions. The concentration of dissolved barium (BaSW), a bioactive nutrientlike element, is linked to biogeochemical processes such as the cycling and export of nutrients. Recent work has calibrated bamboo coral Ba/Ca, a new BaSW proxy, using corals spanning the oxygen minimum zone beneath the California Current System. However, it was previously unclear whether Ba/Cacoral records were internally reproducible. Here we investigate the accuracy of using laser ablation inductively coupled plasma mass spectrometry for Ba/Cacoral analyses and test the internal reproducibility of Ba/Ca among replicate radial transects in the calcite of nine bamboo corals collected from the Gulf of Alaska (643–720 m) and the California margin (870–2054 m). Data from replicate Ba/Ca transects were aligned using visible growth bands to account for nonconcentric growth; smoothed data were reproducible within ~4% for eight corals (n = 3 radii/coral). This intracoral reproducibility further validates using bamboo coral Ba/Ca for BaSW reconstructions. Sections of the Ba/Ca records that were potentially influenced by noncarbonate bound Ba phases occurred in regions where elevated Mg/Ca or Pb/Ca and coincided with anomalous regions on photomicrographs. After removing these regions of the records, increased Ba/Cacoral variability was evident in corals between ~800 and 1500 m. These findings support additional proxy validation to understand BaSW variability on interannual timescales, which could lead to new insights into deep sea biogeochemistry over the past several centuries.NSF Grant Number: OCE-1420984; NOAA/OE Grant Number: NA16RP2637; MIT-WHOI Joint Program; American Geophysical Union Travel Grant; UC Davis President's Undergraduate Fellowship; Bowdoin College Gibbons Summer Research Fellowship2018-03-1

    Dynamic and Thermodynamic Influences on Precipitation in Northeast Mexico on Orbital to Millennial Timescales

    Get PDF
    The timing and mechanisms of past hydroclimate change in northeast Mexico are poorly constrained, limiting our ability to evaluate climate model performance. To address this, we present a multiproxy speleothem record of past hydroclimate variability spanning 62.5 to 5.1 ka from Tamaulipas, Mexico. Here we show a strong influence of Atlantic and Pacific sea surface temperatures on orbital and millennial scale precipitation changes in the region. Multiple proxies show no clear response to insolation forcing, but strong evidence for dry conditions during Heinrich Stadials. While these trends are consistent with other records from across Mesoamerica and the Caribbean, the relative importance of thermodynamic and dynamic controls in driving this response is debated. An isotope-enabled climate model shows that cool Atlantic SSTs and stronger easterlies drive a strong inter-basin sea surface temperature gradient and a southward shift in moisture convergence, causing drying in this region

    Investigating Mexican paleoclimate with precisely dated speleothems

    No full text
    Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2020Cataloged from student-submitted PDF of thesis. "September 2020."Includes bibliographical references.Speleothems, or sedimentary rocks formed in caves, act as valuable archives of past climate change due to their suitability for U-series dating and high-resolution proxy analysis. These records can provide insights into water availability and controls on hydrology prior to the instrumental record. In this thesis, I present three records from newly-analyzed Mexican stalagmites using stable isotope (oxygen and carbon) and trace element to calcium (Mg/Ca and Sr/Ca) ratios as proxies for changing hydroclimate. Chapter 2 presents a precisely dated, mid- Holocene record of high rainfall and limited precipitation variability in the Yucatan Peninsula, Mexico. Chapters 3 and 4 present novel climate records from northeastern Mexico, an understudied region of North America. Both records come from cave sites within the Mexican arid zone, which is simultaneously experiencing increased water scarcity and a rapidly growing population. In Chapter 3, I examine a speleothem from the first millennium of the Common Era, which showed that there is a precipitation dipole between northern and southern Mexico. Chapter 4 highlights, for the first time at decadal resolution, the northeast Mexican response to the 8.2 ka event and the Younger Dryas. These chapters show that the San Luis PotosĂ­ region is vulnerable to droughts under multiple climate mean states, and is subject to drying as Atlantic Meridional Overturning Circulation weakens due to anthropogenic climate change. The climate records detailed in this thesis improve our understanding of controls on Mexican hydroclimate and can serve as benchmarks for climate models.by Gabriela Serrato Marks.Ph. D.Ph.D. Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution

    Cryogenic cave carbonate and implications for thawing permafrost at Winter Wonderland Cave, Utah, USA

    No full text
    AbstractWinter Wonderland Cave contains perennial ice associated with two types of cryogenic cave carbonate (CCC) formed during the freezing of water. CCCfine is characterized by relatively high δ13C values, whereas CCCcoarse exhibits notably low δ18O values indicating precipitation under (semi)closed-system conditions in a pool of residual water beneath an ice lid. Previous work has concluded that CCCcoarse forms during permafrost thaw, making the presence of this precipitate a valuable indicator of past cryospheric change. Available geochronologic evidence indicates that CCC formation in this cave is a Late Holocene or contemporary process, and field observations suggest that the cave thermal regime recently changed in a manner that permits the ingress of liquid water. This is the first documented occurence of CCCcoarse in the Western Hemisphere and one of only a few locations where these minerals have been found in association with ice. Winter Wonderland Cave is a natural laboratory for studying CCC genesis.</jats:p

    Evidence for Decreased Precipitation Variability in the Yucatán Peninsula During the Mid‐Holocene

    Get PDF
    Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 36(5), (2021): e2021PA004219, https://doi.org/10.1029/2021PA004219.The Yucatán Peninsula (YP) has a complex hydroclimate with many proposed drivers of interannual and longer-term variability, ranging from coupled ocean–atmosphere processes to frequency of tropical cyclones. The mid-Holocene, a time of higher Northern Hemisphere summer insolation, provides an opportunity to test the relationship between YP precipitation and ocean temperature. Here, we present a new, ∼annually resolved speleothem record of stable isotope (δ18O and δ13C) and trace element (Mg/Ca and Sr/Ca) ratios for a section of the mid-Holocene (5.2–5.7 kyr BP), before extensive agriculture began in the region. A meter-long stalagmite from Río Secreto, a cave system in Playa del Carmen, Mexico, was dated using U–Th geochronology and layer counting, yielding multidecadal age uncertainty (median 2SD of ±70 years). New proxy data were compared to an existing late Holocene stalagmite record from the same cave system, allowing us to examine changes in hydrology over time and to paleoclimate records from the southern YP. The δ18O, δ13C, and Mg/Ca data consistently indicate higher mean precipitation and lower precipitation variability during the mid-Holocene compared to the late Holocene. Despite this reduced variability, multidecadal precipitation variations were persistent in regional hydroclimate during the mid-Holocene. We therefore conclude that higher summer insolation led to increased mean precipitation and decreased precipitation variability in the northern YP but that the region is susceptible to dry periods across climate mean states. Given projected decreases in wet season precipitation in the YP’s near future, we suggest that climate mitigation strategies emphasize drought preparation.This work was funded by US National Science Foundation grants AGS-1702848 (M. Medina-Elizalde) and AGS-1502877 (S. Burns). This material is based on work supported by the National Science Foundation Graduate Research Fellowship under grant 1122374 (G. Serrato Marks). Additional support was provided by the MIT EAPS Student Research Fund and the WHOI Ocean Ventures Fund.2021-11-0

    Evidence for Decreased Precipitation Variability in the Yucatán Peninsula During the Mid‐Holocene

    No full text
    Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 36(5), (2021): e2021PA004219, https://doi.org/10.1029/2021PA004219.The Yucatán Peninsula (YP) has a complex hydroclimate with many proposed drivers of interannual and longer-term variability, ranging from coupled ocean–atmosphere processes to frequency of tropical cyclones. The mid-Holocene, a time of higher Northern Hemisphere summer insolation, provides an opportunity to test the relationship between YP precipitation and ocean temperature. Here, we present a new, ∼annually resolved speleothem record of stable isotope (δ18O and δ13C) and trace element (Mg/Ca and Sr/Ca) ratios for a section of the mid-Holocene (5.2–5.7 kyr BP), before extensive agriculture began in the region. A meter-long stalagmite from Río Secreto, a cave system in Playa del Carmen, Mexico, was dated using U–Th geochronology and layer counting, yielding multidecadal age uncertainty (median 2SD of ±70 years). New proxy data were compared to an existing late Holocene stalagmite record from the same cave system, allowing us to examine changes in hydrology over time and to paleoclimate records from the southern YP. The δ18O, δ13C, and Mg/Ca data consistently indicate higher mean precipitation and lower precipitation variability during the mid-Holocene compared to the late Holocene. Despite this reduced variability, multidecadal precipitation variations were persistent in regional hydroclimate during the mid-Holocene. We therefore conclude that higher summer insolation led to increased mean precipitation and decreased precipitation variability in the northern YP but that the region is susceptible to dry periods across climate mean states. Given projected decreases in wet season precipitation in the YP’s near future, we suggest that climate mitigation strategies emphasize drought preparation.This work was funded by US National Science Foundation grants AGS-1702848 (M. Medina-Elizalde) and AGS-1502877 (S. Burns). This material is based on work supported by the National Science Foundation Graduate Research Fellowship under grant 1122374 (G. Serrato Marks). Additional support was provided by the MIT EAPS Student Research Fund and the WHOI Ocean Ventures Fund.2021-11-0

    Last glacial hydroclimate variability in the YucatĂĄn Peninsula not just driven by ITCZ shifts

    No full text
    Abstract We reconstructed hydroclimate variability in the Yucatán Peninsula (YP) based on stalagmite oxygen and carbon isotope records from a well-studied cave system located in the northeastern YP, a region strongly influenced by Caribbean climate dynamics. The new stalagmite isotopic records span the time interval between 43 and 26.6 ka BP, extending a previously published record from the same cave system covering the interval between 26.5 and 23.2 ka BP. Stalagmite stable isotope records show dominant decadal and multidecadal variability, and weaker variability on millennial timescales. These records suggest significant precipitation declines in the broader Caribbean region during Heinrich events 4 and 3 of ice-rafted discharge into the North Atlantic, in agreement with the antiphase pattern of precipitation variability across the equator suggested by previous studies. On millennial timescales, the stalagmite isotope records do not show the distinctive saw-tooth pattern of climate variability observed in Greenland during Dansgaard–Oeschger (DO) events, but a pattern similar to North Atlantic sea surface temperature (SST) variability. We propose that shifts in the mean position of the Intertropical Convergence Zone (ITCZ), per se, are not the dominant driver of last glacial hydroclimate variability in the YP on millennial timescales but instead that North Atlantic SSTs played a dominant role. Our results support a negative climate feedback mechanism whereby large low latitude precipitation deficits resulting from AMOC slowdown would lead to elevated salinity in the Caribbean and ultimately help reactivate AMOC and Caribbean precipitation. However, because of the unique drivers of future climate in the region, predicted twenty-first century YP precipitation reductions are unlikely to be modulated by this negative feedback mechanism
    corecore