5 research outputs found

    Tungsten isotopic compositions of iron meteorites: Chronological constraints vs. cosmogenic effects

    No full text
    High-precision W isotopic compositions are presented for 35 iron meteorites from 7 magmatic groups (IC, IIAB, IID, IIIAB, IIIF, IVA, and IVB) and 3 non-magmatic groups (IAB, IIICD, and IIE). Small but resolvable isotopic variations are present both within and between iron meteorite groups. Variations in the 182W/184W ratio reflect either time intervals of metal-silicate differentiation, or result from the burnout of W isotopes caused by a prolonged exposure to galactic cosmic rays. Calculated apparent time spans for some groups of magmatic iron meteorites correspond to 8.5 ± 2.1 My (IID), 5.1 ± 2.3 My (IIAB), and 5.3 ± 1.3 My (IVB). These time intervals are significantly longer than those predicated from models of planetesimal accretion. It is shown that cosmogenic effects can account for a large part of the W isotopic variation. No simple relationship exists with exposure ages, compromising any reliable method of correction. After allowance for maximum possible cosmogenic effects, it is found that there is no evidence that any of the magmatic iron meteorites studied here have initial W isotopic compositions that differ from those of Allende CAIs [ε 182W = -3.47 ± 0.20 [T. Kleine, K. Mezger, H. Palme, E. Scherer and C. Münker, Early core formation in asteroids and late accretion of chondrite parent bodies: evidence from 182Hf-182W in CAIs, metal-rich chondrites and iron meteorites, Geochim. Cosmochim. Acta (in press)]. Cosmogenic corrections cannot yet be made with sufficient accuracy to obtain highly precise ages for iron meteorites. Some of the corrected ages nevertheless require extremely early metal-silicate segregation no later than 1 My after formation of CAIs. Therefore, magmatic iron meteorites appear to provide the best examples yet identified of material derived from the first planetesimals that grew by runaway growth, as modelled in dynamic simulations. Non-magmatic iron meteorites have a more radiogenic W isotopic composition than magmatic ones, even without cosmogenic corrections. This indicates that most of the IAB irons formed between 5 ± 3 and 11 ± 6 My after Allende CAIs. Similarly, the IIE irons formed between 9 ± 4 and 14 ± 5 My after the start of the solar system. Unlike IABs and IIEs, IIICDs do not show any resolvable W isotopic differences relative to Allende CAIs. © 2005 Elsevier B.V. All rights reserved

    Hafnium-tungsten chronometry of angrites and the earliest evolution of planetary objects

    No full text
    Angrites are amongst the oldest basalts in the solar system and their origins are enigmatic, some even proposing the planet Mercury as the parent body (APB). Whatever their exact provenance their chronometry provides insights into early stages of planetary melting and differentiation. We present the first high-precision internal 182Hf- 182W isochrons for such early differentiated objects. Angrites Sahara 99555, D'Orbigny, and Northwest Africa 2999 define ages of 5.1 ± 1.3 Ma, 4.7 ± 1.3 Ma and 9.5 ± 3.3 Ma respectively after formation of calcium-aluminum-rich refractory inclusions (CAIs). These data are in good agreement with 26Al- 26Mg, 53Mn- 53Cr and most 207Pb- 206Pb ages for other angrites and provide evidence for two texturally and temporally well-resolved groups. The quenched angrites (SAH 99555, D'Orbigny and five others) have a weighted mean age of 4562.1 ± 0.4 Ma and are the products of igneous crystallization on the APB ∼ 5 Ma after the formation of CAIs, whereas the more slowly cooled angrites (NWA 2999, Angra dos Reis, LEW 86010, average age: 4557.7 ±0.2 Ma) reflect metamorphic closure ∼ 5 Ma later following second reheating process or a complex cooling history. The concordance obtained between various short-lived chronometers provides evidence that 26Al, 53Mn and 182Hf were homogeneously distributed in the solar nebula, although we cannot rule out the possibility of local small heterogeneities. Contrary to recent proposals, the data are also consistent with the previously determined age of the solar system based on 207Pb- 206Pb systematics of CAIs. The Hf-W data are discussed in the context of two endmember models for the early differentiation of the angrite parent body. In the first model, core formation occurred at 3-4 Ma after CAIs and both groups of angrites formed by two distinct partial melting events from the bulk mantle of the angrite parent body. In the second model, the angrite parent body underwent progressive core formation with an increasing degree of W-depletion over time. In this model, the two groups of angrites derive from distinct reservoirs. The heat sources responsible for such late melting and core formation are unclear. Quenched angrites are coeval with non-magmatic IAB iron meteorites and CB chondrules at ∼ 4562 Ma. However, demonstration of a genetic link between angrite melting and impact events must await the acquisition of still higher resolution chronometry. © 2007 Elsevier B.V. All rights reserved

    Formation of nickel–iron meteorites by chemical fluid transport

    No full text

    Formation of nickel–iron meteorites by chemical fluid transport

    No full text
    corecore