11,966 research outputs found

    Foundations of Portfolio Theory

    Get PDF
    Prize Lecture to the memory of Alfred Nobel, December 7, 1990.Portfolio Theory;

    Appropriate Antibiotic Therapy for Urinary Tract Infections

    Get PDF
    It was stated years ago that physicians pour medicines about which they know little, for diseases about which they know less, into human beings about whom they know nothing. Although as a prophet this wag may have overstated the case as it concerns the therapy of urinary tract infections (UTI), the character of contemporary infectious diseases is, in part, due to the use and abuse of anti-infective agents. One has only to look at the rising incidence of gram-negative bacteremia and the emergence of multiple antibiotic-resistant organisms over the past several decades to appreciate the impact physicians have made with these agents. Despite the drawbacks, the benefits resulting from the use of antibiotics far outweigh the deleterious effects, a fact perhaps realized most vividly by physicians whose careers reach back to the pre-chemotherapeutic era. The enthusiasm for antibiotics makes them one of the most prescribed groups of drugs in the United States, accounting for 15% to 20% of all new and refill prescriptions. Undoubtedly many of the prescriptions are used to treat persons with UTIs, in light of the fact that UTIs are said to rank second only to upper respiratory infections as the most common infections in the western hemisphere

    A Simplex Method for the Portfolio Selection Problem

    Get PDF

    Gravitational Wave Burst Source Direction Estimation using Time and Amplitude Information

    Get PDF
    In this article we study two problems that arise when using timing and amplitude estimates from a network of interferometers (IFOs) to evaluate the direction of an incident gravitational wave burst (GWB). First, we discuss an angular bias in the least squares timing-based approach that becomes increasingly relevant for moderate to low signal-to-noise ratios. We show how estimates of the arrival time uncertainties in each detector can be used to correct this bias. We also introduce a stand alone parameter estimation algorithm that can improve the arrival time estimation and provide root-sum-squared strain amplitude (hrss) values for each site. In the second part of the paper we discuss how to resolve the directional ambiguity that arises from observations in three non co-located interferometers between the true source location and its mirror image across the plane containing the detectors. We introduce a new, exact relationship among the hrss values at the three sites that, for sufficiently large signal amplitudes, determines the true source direction regardless of whether or not the signal is linearly polarized. Both the algorithm estimating arrival times, arrival time uncertainties, and hrss values and the directional follow-up can be applied to any set of gravitational wave candidates observed in a network of three non co-located interferometers. As a case study we test the methods on simulated waveforms embedded in simulations of the noise of the LIGO and Virgo detectors at design sensitivity.Comment: 10 pages, 14 figures, submitted to PR

    Understanding Public Opinion in Debates over Biomedical Research: Looking beyond Political Partisanship to Focus on Beliefs about Science and Society

    Get PDF
    As social scientists have investigated the political and social factors influencing public opinion in science-related policy debates, there has been growing interest in the implications of this research for public communication and outreach. Given the level of political polarization in the United States, much of the focus has been on partisan differences in public opinion, the strategies employed by political leaders and advocates that promote those differences, and the counter-strategies for overcoming them. Yet this focus on partisan differences tends to overlook the processes by which core beliefs about science and society impact public opinion and how these schema are often activated by specific frames of reference embedded in media coverage and popular discourse. In this study, analyzing cross-sectional, nationally representative survey data collected between 2002 and 2010, we investigate the relative influence of political partisanship and science-related schema on Americans' support for embryonic stem cell research. In comparison to the influence of partisan identity, our findings suggest that generalized beliefs about science and society were more chronically accessible, less volatile in relation to media attention and focusing events, and an overall stronger influence on public opinion. Classifying respondents into four unique audience groups based on their beliefs about science and society, we additionally find that individuals within each of these groups split relatively evenly by partisanship but differ on other important dimensions. The implications for public engagement and future research on controversies related to biomedical science are discussed

    Complex X-ray spectral variability in Mkn 421 observed with XMM-Newton

    Get PDF
    The bright blazar Mkn 421 has been observed four times for uninterrupted durations of ~ 9 - 13 hr during the performance verification and calibration phases of the XMM-Newton mission. The source was strongly variable in all epochs, with variability amplitudes that generally increased to higher energy bands. Although the detailed relationship between soft (0.1 - 0.75 keV) and hard (2 - 10 keV) band differed from one epoch to the next, in no case was there any evidence for a measurable interband lag, with robust upper limits of τ<0.08| \tau | < 0.08 hr in the best-correlated light curves. This is in conflict with previous claims of both hard and soft lags of ~1 hr in this and other blazars. However, previous observations suffered a repeated 1.6 hr feature induced by the low-Earth orbital period, a feature that is not present in the uninterrupted XMM-Newton data. The new upper limit on τ|\tau| leads to a lower limit on the magnetic field strength and Doppler factor of B \delta^{1/3} \gs 4.7 G, mildly out of line with the predictions from a variety of homogeneous synchrotron self-Compton emission models in the literature of Bδ1/3=0.20.8 B \delta^{1/3} = 0.2 - 0.8 G. Time-dependent spectral fitting was performed on all epochs, and no detectable spectral hysteresis was seen. We note however that the source exhibited significantly different spectral evolutionary behavior from one epoch to the next, with the strongest correlations in the first and last and an actual divergance between soft and hard X-ray bands in the third. This indicates that the range of spectral variability behavior in Mkn 421 is not fully described in these short snippets; significantly longer uninterrupted light curves are required, and can be obtained with XMM-Newton.Comment: 21 pages, 4 figures, accepted for ApJ, scheduled for August 1, 200

    The Complex X-ray Spectrum of the Sefyert 1.5 Source NGC 6860

    Full text link
    The X-ray spectrum of the Seyfert 1.5 source NGC 6860 is among the most complex of the sources detected in the Swift Burst Alert Telescope all-sky survey. A short XMM-Newton follow-up observation of the source revealed a flat spectrum both above and below 2 keV. To uncover the complexity of the source, in this paper we analyze both a 40 ks Suzaku and a 100 ks XMM-Newton observation of NGC 6860. While the spectral state of the source changed between the newer observations presented here and the earlier short XMM-Newton spectrum - showing a higher flux and steeper power law component - the spectrum of NGC 6860 is still complex with clearly detected warm absorption signatures. We find that a two component warm ionized absorber is present in the soft spectrum, with column densities of about 10^20 and 10^21 cm$^-2, ionization parameters of xi = 180 and 45 ergs cm s^-1, and outflow velocities for each component in the range of 0-300 km s^-1. Additionally, in the hard spectrum we find a broad (approx 11000 km s^-1) Fe K-alpha emission line, redshifted by approx 2800 km s^-1.Comment: 35 pages, 9 figures, Accepted to Ap

    Investigating source confusion in PMN J1603-4904

    Full text link
    PMN J1603-4904 is a likely member of the rare class of γ\gamma-ray emitting young radio galaxies. Only one other source, PKS 1718-649, has been confirmed so far. These objects, which may transition into larger radio galaxies, are a stepping stone to understanding AGN evolution. It is not completely clear how these young galaxies, seen edge-on, can produce high-energy γ\gamma-rays. PMN J1603-4904 has been detected by TANAMI Very Long Baseline Interferometry (VLBI) observations and has been followed-up with multiwavelength observations. A Fermi/LAT γ\gamma-ray source has been associated with it in the LAT catalogs. We have obtained Chandra observations of the source in order to consider the possibility of source confusion, due to the relatively large positional uncertainty of Fermi/LAT. The goal was to investigate the possibility of other X-ray bright sources in the vicinity of PMN J1603-4904 that could be counterparts to the γ\gamma-ray emission. With Chandra/ACIS, we find no other sources in the uncertainty ellipse of Fermi/LAT data, which includes an improved localization analysis of 8 years of data. We further study the X-ray fluxes and spectra. We conclude that PMN J1603-4904 is indeed the second confirmed γ\gamma-ray bright young radio galaxy.Comment: 4 pages, 3 figures, accepted for publication in A&
    corecore