559 research outputs found

    Effective slip over superhydrophobic surfaces in thin channels

    Full text link
    Superhydrophobic surfaces reduce drag by combining hydrophobicity and roughness to trap gas bubbles in a micro- and nanoscopic texture. Recent work has focused on specific cases, such as striped grooves or arrays of pillars, with limited theoretical guidance. Here, we consider the experimentally relevant limit of thin channels and obtain rigorous bounds on the effective slip length for any two-component (e.g. low-slip and high-slip) texture with given area fractions. Among all anisotropic textures, parallel stripes attain the largest (or smallest) possible slip in a straight, thin channel for parallel (or perpendicular) orientation with respect to the mean flow. For isotropic (e.g. chessboard or random) textures, the Hashin-Strikman conditions further constrain the effective slip. These results provide a framework for the rational design of superhydrophobic surfaces.Comment: 4+ page

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    Optical extinction, refractive index, and multiple scattering for suspensions of interacting colloidal particles

    Get PDF
    We provide a general microscopic theory of the scattering cross-section and of the refractive index for a system of interacting colloidal particles, exact at second order in the molecular polarizabilities. In particular: a) we show that the structural features of the suspension are encoded into the forward scattered field by multiple scattering effects, whose contribution is essential for the so-called "optical theorem" to hold in the presence of interactions; b) we investigate the role of radiation reaction on light extinction; c) we discuss our results in the framework of effective medium theories, presenting a general result for the effective refractive index valid, whatever the structural properties of the suspension, in the limit of particles much larger than the wavelength; d) by discussing strongly-interacting suspensions, we unravel subtle anomalous dispersion effects for the suspension refractive index.Comment: Submitted to Journal of Chemical Physics 37 pages, 4 figure

    The problem of nonlinear Landau damping in quark-gluon plasma

    Get PDF
    On the basis of the semiclassical equations for quark-gluon plasma (QGP) and Yang-Mills equation, the generalized kinetic equation for waves with regard to its interaction is obtained. The physical mechanisms defining nonlinear scattering of a plasmon by QGP particles are analysed. The problem on a connection of nonlinear Landau damping rate of longitudinal oscillation with damping rate, obtained on the basis of hard thermal loops approximation, is considered.Comment: 33 page

    Island nucleation in the presence of step edge barriers: Theory and applications

    Full text link
    We develop a theory of nucleation on top of two-dimensional islands bordered by steps with an additional energy barrier ΔES\Delta E_S for descending atoms. The theory is based on the concept of the residence time of an adatom on the island,and yields an expression for the nucleation rate which becomes exact in the limit of strong step edge barriers. This expression differs qualitatively and quantitatively from that obtained using the conventional rate equation approach to nucleation [J. Tersoff et al., Phys. Rev. Lett.72, 266 (1994)]. We argue that rate equation theory fails because nucleation is dominated by the rare instances when two atoms are present on the island simultaneously. The theory is applied to two distinct problems: The onset of second layer nucleation in submonolayer growth, and the distribution of the sizes of top terraces of multilayer mounds under conditions of strong step edge barriers. Application to homoepitaxial growth on Pt(111) yields the estimate ΔES0.33\Delta E_S \geq 0.33 eV for the additional energy barrier at CO-decorated steps.Comment: 13 pages, 3 figure

    Coherent Radio Pulses From GEANT Generated Electromagnetic Showers In Ice

    Full text link
    Radio Cherenkov radiation is arguably the most efficient mechanism for detecting showers from ultra-high energy particles of 1 PeV and above. Showers occuring in Antarctic ice should be detectable at distances up to 1 km. We report on electromagnetic shower development in ice using a GEANT Monte Carlo simulation. We have studied energy deposition by shower particles and determined shower parameters for several different media, finding agreement with published results where available. We also report on radio pulse emission from the charged particles in the shower, focusing on coherent emission at the Cherenkov angle. Previous work has focused on frequencies in the 100 MHz to 1 GHz range. Surprisingly, we find that the coherence regime extends up to tens of Ghz. This may have substantial impact on future radio-based neutrino detection experiments as well as any test beam experiment which seeks to measure coherent Cherenkov radiation from an electromagnetic shower. Our study is particularly important for the RICE experiment at the South Pole.Comment: 44 pages, 29 figures. Minor changes made, reference added, accepted for publication in Phys. Rev.

    Off-Shell Rho-Omega Mixing Through Quark Loops With Non-Perturbative Meson Vertex And Quark Mass Functions

    Full text link
    The momemtum dependence of the off-shell ρ\rho-ω\omega mixing amplitude is calculated through a two-quark loop diagram, using non-perturbative meson-quark vertex functions for the ρ\rho and ω\omega mesons, as well as non-perturbative quark propagators. Both these quantities are generated self-consistently through an interlinked BSE-cum-SDE approach with a 3D support for the BSE kernel with two basic constants which are pre- checked against a wide cross section of both meson and baryon spectra within a common structural framework for their respective 3D BSE's. With this pre-calibration, the on-shell strength works out at -2.434δ(mq2)\delta(m_q^2) in units of the change in "constituent mass squared", which is consistent with the e+ee^+e^- to π+π\pi^+\pi^- data for a u-d mass difference of ~4 MeV ,while the relative off-shell strength (0.99 ±\pm 0.01) lies midway between quark-loop and QCD-SR results. We also calculate the photon-mediated ρ\rho-ω\omega propagator whose off-shell structure has an additional pole at q2q^2=0. The implications of these results vis-a-vis related investigations are discussed.Comment: 12 Pages, latex file, NTUTH-94-0

    Extra Dirac Equations

    Get PDF
    This paper has rather a pedagogical meaning. Surprising symmetries in the (j,0)(0,j)(j,0)\oplus (0,j) Lorentz group representation space are analyzed. The aim is to draw reader's attention to the possibility of describing the particle world on the ground of the Dirac "doubles". Several tune points of the variational principle for this kind of equations are briefly discussed.Comment: REVTeX 3.0, 14p

    Observations of the Askaryan Effect in Ice

    Get PDF
    We report on the first observations of the Askaryan effect in ice: coherent impulsive radio Cherenkov radiation from the charge asymmetry in an electromagnetic (EM) shower. Such radiation has been observed in silica sand and rock salt, but this is the first direct observation from an EM shower in ice. These measurements are important since the majority of experiments to date that rely on the effect for ultra-high energy neutrino detection are being performed using ice as the target medium. As part of the complete validation process for the Antarctic Impulsive Transient Antenna (ANITA) experiment, we performed an experiment at the Stanford Linear Accelerator Center (SLAC) in June 2006 using a 7.5 metric ton ice target, yielding results fully consistent with theoretical expectations.Comment: 4 pages, 5 figures, minor correction
    corecore