83 research outputs found

    Modeling the variability of the BL Lacertae object PKS 2155-304

    Full text link
    The bright X-ray selected BL Lacertae object PKS 2155-304 has been the target of two intense multiwavelength campaigns, in November 1991 and in May 1994. Although the spectral energy distributions at both epochs were quite similar, the source exhibited two very distinct variability patterns that cannot be easily reconciled with homogeneous, one-zone jet models. During the first epoch the variability was almost achromatic in amplitude, with a time lag between X-rays and UV of ≈3\approx 3 h, while during the second epoch the variability amplitude increased as a function of wavelength, with the EUV flare peaking ≈1\approx 1 day after the X-ray flare. We model the source using a time-dependent inhomogeneous accelerating jet model. e reproduce the general characteristics of the different variability signatures by assuming that plasma disturbances with different physical properties propagate downstream in an underlying jet characterized by the same set of physical parameters at both epochs. A time delay of ≈\approx 1 day between the hardening of the UV spectral index and the UV flux, present at both epochs, is modeled with stochastic fluctuations in the particle acceleration manifested through small variations of the maximum energy of the injected electrons. We predict that similar time delays will be present in future observations, even in the absence of strong variability events. We stress the importance of observations at neighboring frequencies as a diagnostic tool for the structure of the quiescent jet in blazars, especially in the seemingly dull case when strong variability is absent.Comment: 8 pages, 5 figures. Accepted in ApJ Letter

    High Energy Variability Of Synchrotron-Self Compton Emitting Sources: Why One Zone Models Do Not Work And How We Can Fix It

    Get PDF
    With the anticipated launch of GLAST, the existing X-ray telescopes, and the enhanced capabilities of the new generation of TeV telescopes, developing tools for modeling the variability of high energy sources such as blazars is becoming a high priority. We point out the serious, innate problems one zone synchrotron-self Compton models have in simulating high energy variability. We then present the first steps toward a multi zone model where non-local, time delayed Synchrotron-self Compton electron energy losses are taken into account. By introducing only one additional parameter, the length of the system, our code can simulate variability properly at Compton dominated stages, a situation typical of flaring systems. As a first application, we were able to reproduce variability similar to that observed in the case of the puzzling `orphan' TeV flares that are not accompanied by a corresponding X-ray flare.Comment: to appear in the 1st GLAST symposium proceeding

    Constraints on the Intergalactic Magnetic Field from Gamma-Ray Observations of Blazars

    Full text link
    Gamma rays from distant blazars interact with the extragalactic background light, creating electron-positron pairs, and reducing the gamma-ray flux measured by ground-based atmospheric Cherenkov gamma-ray telescopes. These pairs can Compton-scatter the cosmic microwave background, creating a gamma-ray signature observable by the Fermi Large Area Telesope (LAT). The signature is also dependent on the intergalactic magnetic field (IGMF), since it can deflect the pairs from our line of sight, reducing the gamma-ray emission. We present preliminary constraints on the IGMF using Fermi-LAT and Cherenkov telescope observations, ruling out both very large and very small values of the IGMF strength.Comment: 7 pages, 4 figures. 2012 Fermi Symposium proceedings - eConf C121028 (fixed minor typo in title

    Witnessing the gradual slow-down of powerful extragalactic jets: The X-ray -- optical -- radio connection

    Full text link
    A puzzling feature of the {\it Chandra}--detected quasar jets is that their X-ray emission decreases faster along the jet than their radio emission, resulting to an outward increasing radio to X-ray ratio. In some sources this behavior is so extreme that the radio emission peak is located clearly downstream of that of the X-rays. This is a rather unanticipated behavior given that the inverse Compton nature of the X-rays and the synchrotron radio emission are attributed to roughly the same electrons of the jet's non-thermal electron distribution. In this note we show that this morphological behavior can result from the gradual deceleration of a relativistic flow and that the offsets in peak emission at different wavelengths carry the imprint of this deceleration. This notion is consistent with another recent finding, namely that the jets feeding the terminal hot spots of powerful radio galaxies and quasars are still relativistic with Lorentz factors Γ∼2−3\Gamma \sim 2-3. The picture of the kinematics of powerful jets emerging from these considerations is that they remain relativistic as they gradually decelerate from Kpc scales to the hot spots, where, in a final collision with the intergalactic medium, they slow-down rapidly to the subrelativistic velocities of the hot spot advance speed.Comment: Submitted in ApJ Letters on Jan. 14, 200
    • …
    corecore