4,689 research outputs found

    Stochastic Ratchet Mechanisms for Replacement of Proteins Bound to DNA

    Get PDF
    Experiments indicate that unbinding rates of proteins from DNA can depend on the concentration of proteins in nearby solution. Here we present a theory of multi-step replacement of DNA-bound proteins by solution-phase proteins. For four different kinetic scenarios we calculate the depen- dence of protein unbinding and replacement rates on solution protein concentration. We find (1) strong effects of progressive 'rezipping' of the solution-phase protein onto DNA sites liberated by 'unzipping' of the originally bound protein; (2) that a model in which solution-phase proteins bind non-specifically to DNA can describe experiments on exchanges between the non specific DNA- binding proteins Fis-Fis and Fis-HU; (3) that a binding specific model describes experiments on the exchange of CueR proteins on specific binding sites.Comment: \`a paraitre en PHys. Rev. Lett. june 201

    Slow nucleic acid unzipping kinetics from sequence-defined barriers

    Full text link
    Recent experiments on unzipping of RNA helix-loop structures by force have shown that about 40-base molecules can undergo kinetic transitions between two well-defined `open' and `closed' states, on a timescale = 1 sec [Liphardt et al., Science 297, 733-737 (2001)]. Using a simple dynamical model, we show that these phenomena result from the slow kinetics of crossing large free energy barriers which separate the open and closed conformations. The dependence of barriers on sequence along the helix, and on the size of the loop(s) is analyzed. Some DNAs and RNAs sequences that could show dynamics on different time scales, or three(or more)-state unzipping, are proposed.Comment: 8 pages Revtex, including 4 figure

    Modulation of HU-DNA interactions by salt concentration and applied force.

    Get PDF
    HU is one of the most abundant proteins in bacterial chromosomes and participates in nucleoid compaction and gene regulation. We report experiments using DNA stretching that study the dependence of DNA condensation by HU on force, salt and HU concentration. Previous experiments at sub-physiological salt levels revealed that low concentrations of HU could compact DNA, whereas larger HU concentrations formed a DNA-stiffening complex. Here we report that this bimodal binding behavior depends sensitively on salt concentration. Only the compaction mode was observed for 150 mM and higher NaCl levels, i.e. for physiological salt concentrations. Similar results were obtained for the more physiological salt K-glutamate. Real-time studies of dissociation kinetics revealed that HU unbound slowly (minutes to hours under the conditions studied) but completely for salt concentrations at or above 100 mM NaCl; the lifetime of HU complexes was observed to increase with the HU concentration at which the complexes were formed, and to decrease with salt concentration. Higher salt levels of 300 mM NaCl completely eliminated observable HU binding to DNA. Finally, we observed that the dissociation kinetics depend on force applied to the DNA: increased applied force in the sub-piconewton range accelerates dissociation, suggesting a mechanism for DNA tension to regulate chromosome structure and gene expression

    Diffusive high-temperature transport in the one-dimensional Hubbard model

    Full text link
    We consider charge and spin transport in the one-dimensional Hubbard model at infinite temperature, half-filling and zero magnetization. Implementing matrix-product-operator simulations of the non-equilibrium steady states of boundary-driven open Hubbard chains for up to 100 sites we find clear evidence of diffusive transport for any (non-zero and finite) value of the interaction U.Comment: 6 pages RevTeX + 8 eps figures; revised and extended versio

    Elasticity model of a supercoiled DNA molecule

    Full text link
    Within a simple elastic theory, we study the elongation versus force characteristics of a supercoiled DNA molecule at thermal equilibrium in the regime of small supercoiling. The partition function is mapped to the path integral representation for a quantum charged particle in the field of a magnetic monopole with unquantized charge. We show that the theory is singular in the continuum limit and must be regularised at an intermediate length scale. We find good agreement with existing experimental data, and point out how to measure the twist rigidity accurately.Comment: Latex, 4 pages. The figure contains new experimental data, giving a new determination of the twist rigidit

    Phase gate and readout with an atom/molecule hybrid platform

    Full text link
    We suggest a combined atomic/molecular system for quantum computation, which takes advantage of highly developed techniques to control atoms and recent experimental progress in manipulation of ultracold molecules. We show that two atoms of different species in a given site, {\it e.g.}, in an optical lattice, could be used for qubit encoding, initialization and readout, with one atom carrying the qubit, the other enabling a gate. In particular, we describe how a two-qubit phase gate can be realized by transferring a pair of atoms into the ground rovibrational state of a polar molecule with a large dipole moment, and allowing two molecules to interact via their dipole-dipole interaction. We also discuss how the reverse process of coherently transferring a molecule into a pair of atoms could be used as a readout tool for molecular quantum computers
    corecore