17 research outputs found

    A Deep Learning-Based Intrusion Detection System for MQTT Enabled IoT

    Get PDF
    A large number of smart devices in Internet of Things (IoT) environments communicate via different messaging protocols. Message Queuing Telemetry Transport (MQTT) is a widely used publish–subscribe-based protocol for the communication of sensor or event data. The publish–subscribe strategy makes it more attractive for intruders and thus increases the number of possible attacks over MQTT. In this paper, we proposed a Deep Neural Network (DNN) for intrusion detection in the MQTT-based protocol and also compared its performance with other traditional machine learning (ML) algorithms, such as a Naive Bayes (NB), Random Forest (RF), k-Nearest Neighbour (kNN), Decision Tree (DT), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRUs). The performance is proved using two different publicly available datasets, including (1) MQTT-IoT-IDS2020 and (2) a dataset with three different types of attacks, such as Man in the Middle (MitM), Intrusion in the network, and Denial of Services (DoS). The MQTT-IoT-IDS2020 contains three abstract-level features, including Uni-Flow, Bi-Flow, and Packet-Flow. The results for the first dataset and binary classification show that the DNN-based model achieved 99.92%, 99.75%, and 94.94% accuracies for Uni-flow, Bi-flow, and Packet-flow, respectively. However, in the case of multi-label classification, these accuracies reduced to 97.08%, 98.12%, and 90.79%, respectively. On the other hand, the proposed DNN model attains the highest accuracy of 97.13% against LSTM and GRUs for the second dataset

    Unification of Edge Energy Grids for Empowering Small Energy Producers

    No full text
    The current energy landscape is largely comprised of big stakeholders, who are often the monopolistic drivers of their local market. This fact does not leave any room for smaller players to participate in this procedure by contributing their part in the energy pool. Moreover, the dynamic demand for power along with the current power production rate are not corelated, rendering the power distribution grid, a best effort network, prone to power failures, due to the inevitable irregularities in demand. This paper introduces a novel concept that allows small energy producers, such as solar panel grids, to offer their production excess through an intelligent energy brokerage blockchain-based framework. The proposed framework ingests the vast amounts of bigdata stemming from the distributed smart energy grids smart metering and allows for automatic commercial transactions of power between the participants of a dedicated marketplace. Values dynamically fluctuate depending on the real-time offer and demand and the grid’s state. Thus, all partaking stakeholders are able to take the most out of their product by leveraging the intelligence provided by the energy marketplace, and contribute to the overall stabilization of the energy grid

    Towards a Machine Learning Based Situational Awareness Framework for Cybersecurity: An SDN Implementation

    No full text
    The ever-increasing number of internet-connected devices, along with the continuous evolution of cyber-attacks, in terms of volume and ingenuity, has led to a widened cyber-threat landscape, rendering infrastructures prone to malicious attacks. Towards addressing systems’ vulnerabilities and alleviating the impact of these threats, this paper presents a machine learning based situational awareness framework that detects existing and newly introduced network-enabled entities, utilizing the real-time awareness feature provided by the SDN paradigm, assesses them against known vulnerabilities, and assigns them to a connectivity-appropriate network slice. The assessed entities are continuously monitored by an ML-based IDS, which is trained with an enhanced dataset. Our endeavor aims to demonstrate that a neural network, trained with heterogeneous data stemming from the operational environment (common vulnerability enumeration IDs that correlate attacks with existing vulnerabilities), can achieve more accurate prediction rates than a conventional one, thus addressing some aspects of the situational awareness paradigm. The proposed framework was evaluated within a real-life environment and the results revealed an increase of more than 4% in the overall prediction accuracy

    Efficient next generation emergency communications over multi-access edge computing

    No full text
    Traditionally, emergency communications between citizens and public authorities relied on legacy telecommunication technologies unable to cope with the agile, rich-media-content communications that mobile users are already using. This is due to the lack of harmonization and interoperable IP-based networking solutions. With the operators currently migrating to broadband IP infrastructures, emergency systems also need to follow this path and adapt their emergency communication platforms to fulfill next generation emergency services regulatory requirements. This becomes even more evident in light of the forthcoming 5G networks, which are envisioned to support an amalgam of diverse applications and services with heterogeneous performance requirements, including mission-critical IoT communication, massive machine-type communication, and gigabit mobile connectivity. Emergency service operators face an enormous challenge in order to synchronize their model of operation with the 5G paradigm. This article studies the challenges that next generation emergency services need to overcome in order to fulfill the requirements for rich-content, real-time, location-specific communications. The concept for next generation emergency communications as described in the project EMYNOS is presented, along with a vision of how this concept can fulfill the 5G requirements for ultra-reliable and ultra-low-latency emergency communications

    Experimental Assessment of Common Crucial Factors That Affect LoRaWAN Performance on Suburban and Rural Area Deployments

    No full text
    LoRaWAN networks might be a technology that could facilitate extreme energy-efficient operation while offering great capacity for suburban and rural area deployment, but this can be a challenging task for a network administrator. Constraints that deform the trade-off triangle of coverage, scalability and energy efficiency need to be overcome. The scope of this study is to review the limitations of the LoRaWAN protocol in order to summarize and assess the crucial factors that affect communication performance, related to data rate allocation, bidirectional traffic and radio spectrum utilization. Based on the literature, these factors correspond mostly to configurable payload transmission parameters, including transmission interval, data rate allocation, requirement for acknowledgements and retransmission. In this work, with simulation experiments, we find that collision occurrences greatly affect channel occupancy. In particular, it was evaluated that collision occurrence is increasingly affected by transmission intervals, which have the most significant negative impact on packet delivery rate (PDR). We then validated that clustering of end nodes in the vicinity of a gateway, taking into account distance and transmission settings, can improve network scalability. This can assure distribution of the total transmission time to end nodes with respect to application-related QoS requirements. Following this clustering approach, we achieved a PDR greater than 0.90 in a simulation setting with 6000 end nodes in a 10 km coverage

    Experimental Assessment of Common Crucial Factors That Affect LoRaWAN Performance on Suburban and Rural Area Deployments

    No full text
    LoRaWAN networks might be a technology that could facilitate extreme energy-efficient operation while offering great capacity for suburban and rural area deployment, but this can be a challenging task for a network administrator. Constraints that deform the trade-off triangle of coverage, scalability and energy efficiency need to be overcome. The scope of this study is to review the limitations of the LoRaWAN protocol in order to summarize and assess the crucial factors that affect communication performance, related to data rate allocation, bidirectional traffic and radio spectrum utilization. Based on the literature, these factors correspond mostly to configurable payload transmission parameters, including transmission interval, data rate allocation, requirement for acknowledgements and retransmission. In this work, with simulation experiments, we find that collision occurrences greatly affect channel occupancy. In particular, it was evaluated that collision occurrence is increasingly affected by transmission intervals, which have the most significant negative impact on packet delivery rate (PDR). We then validated that clustering of end nodes in the vicinity of a gateway, taking into account distance and transmission settings, can improve network scalability. This can assure distribution of the total transmission time to end nodes with respect to application-related QoS requirements. Following this clustering approach, we achieved a PDR greater than 0.90 in a simulation setting with 6000 end nodes in a 10 km coverage

    On Analyzing Routing Selection for Aerial Autonomous Vehicles Connected to Mobile Network

    No full text
    This paper proposes a two-phase algorithm for multi-criteria selection of packet forwarding in unmanned aerial vehicles (UAV), which communicate with the control station through commercial mobile network. The selection of proper data forwarding in the two radio link: From UAV to the antenna and from the antenna to the control station, are independent but subject to constrains. The proposed approach is independent of the intra-domain forwarding, so it may be useful for a number of different scenarios of Unmanned Aerial Vehicles connectivity (e.g., a swarm of drones). In the implementation developed in this paper, the connection is served by three different mobile network operators in order to ensure reliable connectivity. The proposed algorithm makes use of Machine Learning tools that are properly trained for predicting the behavior of the link connectivity during the flight duration. The results presented in the last section validate the algorithm and the training process of the machines

    Melding Fog Computing and {IoT} for Deploying Secure, Response-Capable Healthcare Services in 5G and Beyond

    No full text
    The fifth generation (5G) of mobile networks is designed to mark the beginning of the hyper-connected society through a broad set of novel features and disruptive characteristics, delivering massive connectivity, coverage and availability paired with unprecedented speed, throughput and capacity. Such a highly capable networking paradigm, facilitated by its integrated segments and available subsystems, will propel numerous cutting-edge, innovative and versatile services, spanning every possible business vertical. Augmented, response-capable healthcare services have already been identified as one of the prime objectives of both vendors and customers; therefore, addressing controversies and shortcomings related to the specific field is considered a priority for all stakeholders. The scope of this paper is to present the architectural elements of 5G which enable efficient, remote healthcare services along with emergency health monitoring and response capability. In addition, we propose a holistic scheme based on technical enablers such as Internet-of-Things (IoT) and Fog Computing, for mitigating common issues and current limitations which may compromise the proclaimed service delivery
    corecore