3,169 research outputs found

    Forcing boundary-layer transition on an inverted airfoil in ground effect and at varying incidence

    Get PDF
    Presented at 34th AIAA Applied Aerodynamics ConferenceThe influence of the laminar boundary-layer state on a wing operating in ground effect at Re = 6 × 10 has been investigated using experiments with a model that provides two-dimensional flow and computations with a panel-method code. The effect of a boundary-layer trip placed at varying distances from the leading edge was observed at various incidences in terms of on-surface characteristics, including pressure measurements, flow visualisation and hot-film anemometry, and off-surface characteristics with LDA surveys below and behind the wing. The act of forcing transition led to downforce being reduced and drag increased, moreover, it altered almost all aspects of the wing’s aerodynamic characteristics, with the effect becoming greater as the trip was placed closer to the leading edge. These aspects include the replacement of a laminar separation bubble with trailing-edge separation, a thicker boundary layer, and a thicker wake with greater velocity deficit. The importance of considering laminar phenomena for wings operating in ground effect has been show

    Forcing boundary-layer transition on a single-element wing in ground effect

    Get PDF
    The transition from a laminar to turbulent boundary layer on a wing operating at low Reynolds numbers can have a large effect on its aerodynamic performance. For a wing operating in ground effect, where very low pressures and large pressure gradients are common, the effect is even greater. A study was conducted into the effect of forcing boundary-layer transition on the suction surface of an inverted GA(W)-1 section single-element wing in ground effect, which is representative of a racing-car front wing. Transition to a turbulent boundary layer was forced at varying chordwise locations and compared to the free-transition case using experimental and computational methods. Forcing transition caused the laminar separation bubble, which was the unforced transition mechanism, to be eliminated in all cases and trailing-edge separation to occur instead. The aerodynamic forces produced by the wing with trailing-edge separation were shown to be dependent on trip location. As the trip was moved upstream the separation point also moved upstream, this led to an increase in drag and reduction in downforce. In addition to significant changes to the pressure field around the wing, turbulent energy in the wake was considerably reduced by forcing transition. The differences between free- and forced-transition wings were shown to be significant, highlighting the importance of modelling transition for ground-effect wings. Additionally, it has been shown that whilst it is possible to reproduce the force coefficient of a higher Reynolds number case by forcing the boundary layer to a turbulent state, the flow features, both on-surface and off-surface, are not recreated

    Characteristics of boundary-layer transition and Reynolds-number sensitivity of three-dimensional wings of varying complexity operating in ground effect

    Get PDF
    The influence of Reynolds number on the aerodynamic characteristics of various wing geometries was investigated through wind-tunnel experimentation. The test models represented racing car front wings of varying complexity: from a simple single-element wing to a highly complex 2009-specification formula-one wing. The aim was to investigate the influence of boundary-layer transition and Reynolds-number dependency of each wing configuration. The single-element wing showed significant Reynolds-number dependency, with up to 320% and 35% difference in downforce and drag, respectively, for a chordwise Reynolds number difference of 0.81 × 105. Across the same test range, the multi-element configuration of the same wing and the F1 wing displayed less than 6% difference in downforce and drag. Surface-flow visualization conducted at various Reynolds numbers and ground clearances showed that the separation bubble that forms on the suction surface of the wing changes in both size and location. As Reynolds number decreased, the bubble moved upstream and increased in size, while reducing ground clearance caused the bubble to move upstream and decrease in size. The fundamental characteristics of boundary layer transition on the front wing of a monoposto racing car have been established

    The String Deviation Equation

    Full text link
    The relative motion of many particles can be described by the geodesic deviation equation. This can be derived from the second covariant variation of the point particle's action. It is shown that the second covariant variation of the string action leads to a string deviation equation.Comment: 18 pages, some small changes, no tables or diagrams, LaTex2

    Forcing boundary-layer transition on an inverted airfoil in ground effect

    Get PDF
    The influence of the laminar boundary-layer state on a wing operating in ground effect has been investigated using experiments with a model that provides two-dimensional flow. The effect of a boundary-layer trip placed at varying distances from the leading edge was observed at various incidences in terms of on-surface characteristics, including pressure measurements, flow visualization, and hot-film anemometry, and off-surface characteristics with velocity surveys below and behind the wing. The act of forcing transition led to downforce being reduced and drag increased, moreover, it altered almost all aspects of the wing’s aerodynamic characteristics, with the effect becoming greater as the trip was placed closer to the leading edge. These aspects include the replacement of a laminar separation bubble with trailing-edge separation, a thicker boundary layer, and a thicker wake with greater velocity deficit. The importance of considering laminar phenomena for wings operating in ground effect has been shown

    The Metagalactic Ionizing Radiation Field at Low Redshift

    Get PDF
    We compute the ionizing radiation field at low redshift, arising from Seyferts, QSOs, and starburst galaxies. This calculation combines recent Seyfert luminosity functions, extrapolated ultraviolet fluxes from our IUE-AGN database, and a new intergalactic opacity model based on Hubble Space Telescope and Keck Ly-alpha absorber surveys. At z = 0 for AGN only, our best estimate for the specific intensity at 1 Ryd is I_0 = 1.3 (+0.8/-0.5) x 10^-23 ergs/cm^2/s/Hz/sr, independent of H_0, Omega_0, and Lambda. The one-sided ionizing photon flux is Phi_ion = 3400 (+2100/-1300) photons/cm^2/s, and the H I photoionization rate is Gamma_HI = 3.2 (+2.0/-1.2) x 10^-14 s^-1 for alpha_s = 1.8. We also derive Gamma_ HI for z = 0 - 4. These error ranges reflect uncertainties in the spectral indexes for the ionizing EUV (alpha_s = 1.8 +/- 0.3) and the optical/UV (alpha_UV = 0.86 +/- 0.05), the IGM opacity model, the range of Seyfert luminosities (0.001 - 100 L*) and the completeness of the luminosity functions. Our estimate is a factor of three lower than the most stringent upper limits on the ionizing background (Phi_ion < 10^4 photons/cm^2/s) obtained from H-alpha observations in external clouds, and it lies within the range implied by other indirect measures. Starburst galaxies with a sufficiently large Lyman continuum escape fraction, f_ esc > 0.05, may provide a comparable background to AGN, I_0 (z=0) = 1.1 (+1.5/-0.7) x 10^{-23). An additional component of the ionizing background of this magnitude would violate neither upper limits from H-alpha observations nor the acceptable range from other measurements.Comment: 30 pages, 9 figures, accepted for Astronomical J. (Oct. 1999

    Stability transitions for axisymmetric relative equilibria of Euclidean symmetric Hamiltonian systems

    Get PDF
    In the presence of noncompact symmetry, the stability of relative equilibria under momentum-preserving perturbations does not generally imply robust stability under momentum-changing perturbations. For axisymmetric relative equilibria of Hamiltonian systems with Euclidean symmetry, we investigate different mechanisms of stability: stability by energy-momentum confinement, KAM, and Nekhoroshev stability, and we explain the transitions between these. We apply our results to the Kirchhoff model for the motion of an axisymmetric underwater vehicle, and we numerically study dissipation induced instability of KAM stable relative equilibria for this system.Comment: Minor revisions. Typographical errors correcte

    Movement of deep-sea coral populations on climatic timescales

    Get PDF
    During the past 40,000 years, global climate has moved into and out of a full glacial period, with the deglaciation marked by several millennial-scale rapid climate change events. Here we investigate the ecological response of deep-sea coral communities to both glaciation and these rapid climate change events. We find that the deep-sea coral populations of Desmophyllum dianthus in both the North Atlantic and the Tasmanian seamounts expand at times of rapid climate change. However, during the more stable Last Glacial Maximum, the coral population globally retreats to a more restricted depth range. Holocene populations show regional patterns that provide some insight into what causes these dramatic changes in population structure. The most important factors are likely responses to climatically driven changes in productivity, [O_2] and [CO_3^(2–)]

    Theology, News and Notes - Vol. 50, No. 03

    Get PDF
    Theology News & Notes was a theological journal published by Fuller Theological Seminary from 1954 through 2014.https://digitalcommons.fuller.edu/tnn/1148/thumbnail.jp
    • …
    corecore