123 research outputs found

    Size-Controlled Large-Diameter and Few-Walled Carbon Nanotube Catalysts for Oxygen Reduction

    Get PDF
    We demonstrate a new strategy for tuning the size of large-diameter and few-walled nitrogen-doped carbon nanotubes (N-CNTs) from 50 to 150 nm by varying the transition metal (TM = Fe, Co, Ni or Mn) used to catalyze graphitization of dicyandiamide. Fe yielded the largest tubes, followed by Co and Ni, while Mn produced a clot-like carbon morphology. We show that morphology is correlated with electrocatalytic activity for the oxygen reduction reaction (ORR). A clear trend of Fe \u3e Co \u3e Ni \u3e Mn for the ORR catalytic activity was observed, in both alkaline media and more demanding acidic media. The Fe-derived N-CNTs exhibited the highest BET (∼870 m2 g−1) and electrochemically accessible (∼450 m2 g−1) surface areas and, more importantly, the highest concentration of nitrogen incorporated into the carbon planes. Thus, in addition to the intrinsic high activity of Fe-derived catalysts, the high surface area and nitrogen doping contribute to high ORR activity. This work, for the first time, demonstrates size-controlled synthesis of large-diameter N-doped carbon tube electrocatalysts by varying the metal used in N-CNT generation. Electrocatalytic activity of the Fe-derived catalyst is already the best among studied metals, due to the high intrinsic activity of possible Fe–N coordination. This work further provides a promising route to advanced Fe–N–C nonprecious metal catalysts by generating favorable morphology with more active sites and improved mass transfer

    Aqueous ferrofluid of magnetite nanoparticles: Fluores- cence labeling and magnetophoretic control

    Get PDF
    A method is presented for the preparation of a biocompatible ferrofluid containing dye-functionalized magnetite nanoparticles that can serve as fluorescent markers. This method entails the surface functionalization of magnetite nanoparticles using citric acid to produce a stable aqueous dispersion and the subsequent binding of fluorescent dyes to the surface of the particles. Several ferrofluid samples were prepared and characterized using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), BET surface area analysis, transmission electron microscopy (TEM), and SQUID magnetometry. In addition, confocal fluorescence microscopy was used to study the response of the fluorescent nanoparticles to an applied magnetic field and their uptake by cells in vitro. Results are presented on the distribution of particle sizes, the fluorescent and magnetic properties of the nanoparticles, and the nature of their surface bonds. Biocompatible ferrofluids with fluorescent nanoparticles enable optical tracking of basic processes at the cellular level combined with magnetophoretic manipulation and should be of substantial value to researchers engaged in both fundamental and applied biomedical research

    An experimental and numerical study of particle nucleation and growth during low-pressure thermal decomposition of silane

    Get PDF
    Abstract This paper discusses an experimental and numerical study of the nucleation and growth of particles during low-pressure (∼1:0 Torr) thermal decomposition of silane (SiH 4 ). A Particle Beam Mass Spectrometer was used to measure particle size distributions in a parallel-plate showerhead-type semiconductor reactor. An aerosol dynamics moment-type formulation coupled with a chemically reacting uid ow model was used to predict particle concentration, size, and transport in the reactor. Particle nucleation kinetics via a sequence of chemical clustering reactions among silicon hydride molecular clusters, growth by heterogeneous chemical reactions on particle surfaces and coagulation, and transport by convection, di usion, and thermophoresis were included in the model. The e ect of pressure, temperature, ow residence time, carrier gas, and silane concentration were examined under conditions typically used for low-pressure (∼1 Torr) thermal chemical vapor deposition of polysilicon. The numerical simulations predict that several pathways involving linear and polycyclic silicon hydride molecules result in formation of particle "nuclei," which subsequently grow by heterogeneous reactions on the particle surfaces. The model is in good agreement with observations for the pressure and temperature at which particle formation begins, particle sizes and growth rates, and relative particle concentrations at various process conditions. A simpliÿed, computationally inexpensive, quasi-coupled modeling approach is suggested as an engineering tool for process equipment design and contamination control during low-pressure thermal silicon deposition.

    Electron Affinities of Selected Hydrogenated Silicon Clusters (Si x

    No full text

    In vivo toxicity of quantum dots: no cause for concern?

    No full text
    Semiconductor nanocrystals, also known as quantum dots (QDs), possess unique optical properties that make them useful as fluorescent probes or traceable nanocarriers for in vivo applications ranging from imaging to theranostics. The surfaces of QDs can be conjugated with biomolecules to enable in vivo targeted imaging and drug delivery. These unique capabilities and qualities of QDs have made them a powerful platform that can help to reveal important biological insights. Ultimately, they may also provide unique benefits in clinical diagnostic and therapeutic applications. However, progress toward clinical applications has been delayed by concerns about the potential toxicity of QDs. Much of the QDs community has been hesitant to work toward clinical applications, based on reports demonstrating release of toxic heavy metal ions from degradation of QDs in cell culture studies. In addition, photoexcited QDs have been shown to generate reactive oxygen species that are highly toxic to cells. On the other hand, in small animal studies, bioconjugated QDs did not have any observable ill effects at concentrations appropriate for in vivo imaging applications. Thus, conclusions drawn from in vitro and in vivo studies remain somewhat contradictory and do not yet provide a sound basis for confident prediction of in vivo toxicity in humans

    Thermochemistry and kinetics of silicon hydride cluster formation during thermal decomposition of silane.

    No full text
    Product contamination by particles nucleated within the processing environment often limits the deposition rate during chemical vapor deposition processes. A fundamental understanding of how these particles nucleate could allow higher growth rates while minimizing particle contamination. Here we present an extensive chemical kinetic mechanism for silicon hydride cluster formation during silane pyrolysis. This mechanism includes detailed chemical information about the relative stability and reactivity of different possible silicon hydride clusters. It provides a means of calculating a particle nucleation rate that can be used as the nucleation source term in aerosol dynamics models that predict particle formation, growth, and transport. A group additivity method was developed to estimate thermochemical properties of the silicon hydride clusters. Reactivity rules for the silicon hydride clusters were proposed based on the group additivity estimates for the reaction thermochemistry and the analogous reactions of smaller silicon hydrides. These rules were used to generate a reaction mechanism consisting of reversible reactions among silicon hydrides containing up to 10 silicon atoms and irreversible formation of silicon hydrides containing 11-20 silicon atoms. The resulting mechanism was used in kinetic simulations of clustering during silane pyrolysis in the absence of any surface reactions. Results of those simulations are presented, along with reaction path analyses in which key reaction paths and rate-limiting steps are identified and discussed
    • …
    corecore