37 research outputs found
Distinct Roles for Aryl Hydrocarbon Receptor Nuclear Translocator and Ah Receptor in Estrogen-Mediated Signaling in Human Cancer Cell Lines
The activated AHR/ARNT complex (AHRC) regulates the expression of target genes upon exposure to environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Importantly, evidence has shown that TCDD represses estrogen receptor (ER) target gene activation through the AHRC. Our data indicates that AHR and ARNT act independently from each other at non-dioxin response element sites. Therefore, we sought to determine the specific functions of AHR and ARNT in estrogen-dependent signaling in human MCF7 breast cancer and human ECC-1 endometrial carcinoma cells. Knockdown of AHR with siRNA abrogates dioxin-inducible repression of estrogen-dependent gene transcription. Intriguingly, knockdown of ARNT does not effect TCDD-mediated repression of estrogen-regulated transcription, suggesting that AHR represses ER function independently of ARNT. This theory is supported by the ability of the selective AHR modulator 3′,4′-dimethoxy-α-naphthoflavone (DiMNF) to repress estrogen-inducible transcription. Furthermore, basal and estrogen-activated transcription of the genes encoding cathepsin-D and pS2 are down-regulated in MCF7 cells but up-regulated in ECC-1 cells in response to loss of ARNT. These responses are mirrored at the protein level with cathepsin-D. Furthermore, knock-down of ARNT led to opposite but corresponding changes in estrogen-stimulated proliferation in both MCF7 and ECC-1 cells. We have obtained experimental evidence demonstrating a dioxin-dependent repressor function for AHR and a dioxin-independent co-activator/co-repressor function for ARNT in estrogen signalling. These results provide us with further insight into the mechanisms of transcription factor crosstalk and putative therapeutic targets in estrogen-positive cancers
Frequency and patterns of early recanalization after vasectomy
BACKGROUND: Our understanding of early post-vasectomy recanalization is limited to histopathological studies. The objective of this study was to estimate the frequency and to describe semen analysis patterns of early recanalization after vasectomy. METHODS: Charts displaying serial post-vasectomy semen analyses were created using the semen analysis results from 826 and 389 men participating in a randomized trial of fascial interposition (FI) and an observational study of cautery, respectively. In the FI trial, participants were randomly allocated to vas occlusion by ligation and excision with or without FI. In the cautery study, sites used their usual cautery occlusion technique, two with and two without FI. Presumed early recanalization was based on the assessment of individual semen analysis charts by three independent reviewers. Discrepancies were resolved by consensus. RESULTS: Presumed early recanalization was characterized by a very low sperm concentration within two weeks after vasectomy followed by return to large numbers of sperm over the next few weeks. The overall proportion of men with presumed early recanalization was 13% (95% CI 12%–15%). The risk was highest with ligation and excision without FI (25%) and lowest for thermal cautery with FI (0%). The highest proportion of presumed early recanalization was observed among men classified as vasectomy failures. CONCLUSION: Early recanalization, occurring within the first weeks after vasectomy, is more common than generally recognized. Its frequency depends on the occlusion technique performed
Analysis of Epstein-Barr virus reservoirs in paired blood and breast cancer primary biopsy specimens by real time PCR
INTRODUCTION: Epstein-Barr virus (EBV) is present in over 90% of the world's population. This infection is considered benign, even though in limited cases EBV is associated with infectious and neoplastic conditions. Over the past decade, the EBV association with breast cancer has been constantly debated. Adding to this clinical and biological uncertainty, different techniques gave contradictory results for the presence of EBV in breast carcinoma specimens. In this study, minor groove binding (MGB)-TaqMan real time PCR was used to detect the presence of EBV DNA in both peripheral blood and tumor samples of selected patients. METHODS: Peripheral blood and breast carcinoma specimens from 24 patients were collected. DNA was extracted and then amplified by MGB-TaqMan real time PCR. RESULTS: Of 24 breast tumor specimens, 11 (46%) were positive for EBV DNA. Of these 11 breast tumor specimens, 7 (64%) were also positive for EBV DNA in the peripheral blood, while 4 (36%) were positive for EBV DNA in the tumor, but negative in the blood. CONCLUSION: EBV was found at extremely low levels, with a mean of 0.00004 EBV genomes per cell (range 0.00014 to 0.00001 EBV genomes per cell). Furthermore, our finding of the presence of EBV in the tumor specimens coupled to the absence of detection of EBV genomic DNA in the peripheral blood is consistent with the epithelial nature of the virus. Because of the low levels of viral DNA in tumor tissue, further studies are needed to assess the biological input of EBV in breast cancer
Transient Responses to NOTCH and TLX1/HOX11 Inhibition in T-Cell Acute Lymphoblastic Leukemia/Lymphoma
To improve the treatment strategies of T-cell acute lymphoblastic leukemia/lymphoma (T-ALL), further efforts are needed to identify therapeutic targets. Dysregulated expression of HOX-type transcription factors occurs in 30–40% of cases of T-ALL. TLX1/HOX11 is the prototypical HOX-type transcription factor. TLX1 may be an attractive therapeutic target because mice that are deficient in TLX1 are healthy. To test this possibility, we developed a conditional doxycycline-regulated mouse model of TLX1-initiated T-ALL. TLX1 induced T-ALL after ∼5–7 months with penetrance of 15–60%. Similar to human TLX1-type T-ALLs, the TLX1-induced tumors were arrested at the cortical stage of T-cell development and acquired activating NOTCH1 mutations. Inhibition of NOTCH signaling abrogated growth of cell lines derived from the TLX1-induced tumors. NOTCH inhibition also transiently delayed leukemia progression in vivo. Suppression of TLX1 expression slowed the growth of TLX1 tumor cell lines. Suppression of TLX1 in vivo also transiently delayed leukemia progression. We have shown that TLX1 functions as a T-cell oncogene that is active during both the induction and the maintenance phases of leukemia. However, the effect of suppressing NOTCH or TLX1 was transient. The tumors eventually “escaped” from inhibition. These data imply that the biological pathways and gene sets impacted by TLX1 and NOTCH have largely lost their importance in the fully established tumor. They have been supplanted by stronger oncogenic pathways. Although TLX1 or NOTCH inhibitors may not be effective as single agents, they may still contribute to combination therapy for TLX1-driven acute leukemia
Epigenetic Characterization of the Growth Hormone Gene Identifies SmcHD1 as a Regulator of Autosomal Gene Clusters
Regulatory elements for the mouse growth hormone (GH) gene are located distally in a putative locus control region (LCR) in addition to key elements in the promoter proximal region. The role of promoter DNA methylation for GH gene regulation is not well understood. Pit-1 is a POU transcription factor required for normal pituitary development and obligatory for GH gene expression. In mammals, Pit-1 mutations eliminate GH production resulting in a dwarf phenotype. In this study, dwarf mice illustrated that Pit-1 function was obligatory for GH promoter hypomethylation. By monitoring promoter methylation levels during developmental GH expression we found that the GH promoter became hypomethylated coincident with gene expression. We identified a promoter differentially methylated region (DMR) that was used to characterize a methylation-dependent DNA binding activity. Upon DNA affinity purification using the DMR and nuclear extracts, we identified structural maintenance of chromosomes hinge domain containing -1 (SmcHD1). To better understand the role of SmcHD1 in genome-wide gene expression, we performed microarray analysis and compared changes in gene expression upon reduced levels of SmcHD1 in human cells. Knock-down of SmcHD1 in human embryonic kidney (HEK293) cells revealed a disproportionate number of up-regulated genes were located on the X-chromosome, but also suggested regulation of genes on non-sex chromosomes. Among those, we identified several genes located in the protocadherin β cluster. In addition, we found that imprinted genes in the H19/Igf2 cluster associated with Beckwith-Wiedemann and Silver-Russell syndromes (BWS & SRS) were dysregulated. For the first time using human cells, we showed that SmcHD1 is an important regulator of imprinted and clustered genes
Cabozantinib can block growth of neuroendocrine prostate cancer patient-derived xenografts by disrupting tumor vasculature.
With the advent of potent second-line anti-androgen therapy, we and others have observed an increased incidence of androgen receptor (AR)-null small cell or neuroendocrine prostate cancer (SCNPC) in metastatic castration-resistant prostate cancer (mCRPC). Our study was designed to determine the effect of cabozantinib, a multi-targeted tyrosine kinase inhibitor that inhibits VEGFR2, MET and RET on SCNPC. Transcriptome analysis of the University of Washington rapid autopsy and SU2C mCRPC datasets revealed upregulated MET and RET expression in SCNPCs relative to adenocarcinomas. Additionally, increased MET expression correlated with attenuated AR expression and activity. In vitro treatment of SCNPC patient-derived xenograft (PDX) cells with the MET inhibitor AMG-337 had no impact on cell viability in LuCaP 93 (MET+/RET+) and LuCaP 173.1 (MET-/RET-), whereas cabozantinib decreased cell viability of LuCaP 93, but not LuCaP 173.1. Notably, MET+/RET+ LuCaP 93 and MET-/RET- LuCaP 173.1 tumor volumes were significantly decreased with cabozantinib treatment in vivo, and this activity was independent of MET or RET expression in LuCaP 173.1. Tissue analysis indicated that cabozantinib did not inhibit tumor cell proliferation (Ki67), but significantly decreased microvessel density (CD31) and increased hypoxic stress and glycolysis (HK2) in LuCaP 93 and LuCaP 173.1 tumors. RNA-Seq and gene set enrichment analysis revealed that hypoxia and glycolysis pathways were increased in cabozantinib-treated tumors relative to control tumors. Our data suggest that the most likely mechanism of cabozantinib-mediated tumor growth suppression in SCNPC PDX models is through disruption of the tumor vasculature. Thus, cabozantinib may represent a potential therapy for patients with metastatic disease in tumor phenotypes that have a significant dependence on the tumor vasculature for survival and proliferation
Comparative levels of GH promoter methylation in mice.
<p><b>A.</b> Above, schematic of the relative position of CpGs in the mouse GH promoter. Middle, pairwise analysis comparing the levels of DNA methylation in wild type (WT) with dwarf (dw) mice (Snell) using bisulfite DNA sequencing. Bottom, combined bisulfite restriction analysis (CoBRA) of the CpG located at position −4 on the same samples. The proportion of non-methylated C nucleotide is indicated by the cleaved FokI products (blue arrow). <b>B.</b> The GH promoter becomes demethylated during mouse development and is coincident with GH gene expression. Above, schematic illustration of the developmental events relating to Pit-1-mediated induction of the GH gene and concomitant loss of GH promoter methylation. Below, pyrosequencing of bisulfite-treated genomic DNA extracted from mouse pituitary, selected from different days of mouse development (e14.5, P0.5 or P14.5) and displayed as the percent methylation of CpG sites in the mouse promoter.</p