99 research outputs found

    Urocortin 3 marks mature human primary and embryonic stem cell-derived pancreatic alpha and beta cells.

    Get PDF
    The peptide hormone Urocortin 3 (Ucn 3) is abundantly and exclusively expressed in mouse pancreatic beta cells where it regulates insulin secretion. Here we demonstrate that Ucn 3 first appears at embryonic day (E) 17.5 and, from approximately postnatal day (p) 7 and onwards throughout adult life, becomes a unifying and exclusive feature of mouse beta cells. These observations identify Ucn 3 as a potential beta cell maturation marker. To determine whether Ucn 3 is similarly restricted to beta cells in humans, we conducted comprehensive immunohistochemistry and gene expression experiments on macaque and human pancreas and sorted primary human islet cells. This revealed that Ucn 3 is not restricted to the beta cell lineage in primates, but is also expressed in alpha cells. To substantiate these findings, we analyzed human embryonic stem cell (hESC)-derived pancreatic endoderm that differentiates into mature endocrine cells upon engraftment in mice. Ucn 3 expression in hESC-derived grafts increased robustly upon differentiation into mature endocrine cells and localized to both alpha and beta cells. Collectively, these observations confirm that Ucn 3 is expressed in adult beta cells in both mouse and human and appears late in beta cell differentiation. Expression of Pdx1, Nkx6.1 and PC1/3 in hESC-derived Ucn 3(+) beta cells supports this. However, the expression of Ucn 3 in primary and hESC-derived alpha cells demonstrates that human Ucn 3 is not exclusive to the beta cell lineage but is a general marker for both the alpha and beta cell lineages. Ucn 3(+) hESC-derived alpha cells do not express Nkx6.1, Pdx1 or PC1/3 in agreement with the presence of a separate population of Ucn 3(+) alpha cells. Our study highlights important species differences in Ucn 3 expression, which have implications for its utility as a marker to identify mature beta cells in (re)programming strategies

    The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression

    Full text link
    BackgroundInsulin producing beta cell and glucagon producing alpha cells are colocalized in pancreatic islets in an arrangement that facilitates the coordinated release of the two principal hormones that regulate glucose homeostasis and prevent both hypoglycemia and diabetes. However, this intricate organization has also complicated the determination of the cellular source(s) of the expression of genes that are detected in the islet. This reflects a significant gap in our understanding of mouse islet physiology, which reduces the effectiveness by which mice model human islet disease.ResultsTo overcome this challenge, we generated a bitransgenic reporter mouse that faithfully labels all beta and alpha cells in mouse islets to enable FACS-based purification and the generation of comprehensive transcriptomes of both populations. This facilitates systematic comparison across thousands of genes between the two major endocrine cell types of the islets of Langerhans whose principal hormones are of cardinal importance for glucose homeostasis. Our data leveraged against similar data for human beta cells reveal a core common beta cell transcriptome of 9900+ genes. Against the backdrop of overall similar beta cell transcriptomes, we describe marked differences in the repertoire of receptors and long non-coding RNAs between mouse and human beta cells.ConclusionsThe comprehensive mouse alpha and beta cell transcriptomes complemented by the comparison of the global (dis)similarities between mouse and human beta cells represent invaluable resources to boost the accuracy by which rodent models offer guidance in finding cures for human diabetes

    Paracrine regulation of insulin secretion

    No full text

    Paracrine regulation of insulin secretion

    No full text
    Pancreatic beta cells are the only cell type in our body capable of producing and secreting insulin to instruct the insulin-sensitive cells and tissues of our bodies to absorb nutrients after a meal. Accurate control of insulin release is of critical importance; too little insulin leads to diabetes, while an excess of insulin can cause potentially fatal hypoglycaemia. Yet, the pancreas of most people will control insulin secretion safely and effectively over decades and in response to glucose excursions driven by tens of thousands of meals. Because we only become aware of the important contributions of the pancreas when it fails to maintain glucose homeostasis, it is easy to forget just how well insulin release from a healthy pancreas is matched to insulin need to ensure stable blood glucose levels. Beta cells achieve this feat by extensive crosstalk with the rest of the endocrine cell types in the islet, notably the glucagon-producing alpha cells and somatostatin-producing delta cells. Here I will review the important paracrine contributions that each of these cells makes to the stimulation and subsequent inhibition of insulin release in response to a transient nutrient stimulation, and make the case that a breakdown of this local crosstalk contributes to the pathophysiology of diabetes. Graphical abstract

    Tuning to the right signal.

    No full text
    Pancreatic beta cells are clustered in islets of Langerhans together with alpha cells in an arrangement that facilitates the tight coordination of insulin and glucagon secretion at the source of their release. Other secretory cells, including somatostatin-secreting delta cells and pancreatic polypeptide cells, co-localise with alpha and beta cells in the islet and serve to modulate islet endocrine output. A multitude of non-secretory cell types, including endothelial cells, pericytes, stromal cells, glial cells and macrophages, complete the cellular make up of the islet, which is further enhanced by (para)sympathetic nerve terminals that impinge on the islets via neurotransmitters released in the islet microenvironment. While this islet architecture is relatively simple compared with the vast complexity of the central nervous system, the constellation of cell types united in the islet nevertheless provides a rich substrate for local paracrine and autocrine interactions that affect diverse aspects of islet physiology, ranging from the modulation of hormone secretion to the regulation of islet cell mass via proliferation and death. In this issue of Diabetologia (DOI: 10.1007/s00125-015-3552-5 ), Yang et al take the notion of rich crosstalk within the islet as their point of departure for a systematic evaluation of the beta cell-protective properties of an extensive panel of over 200 factors, with some surprising and highly interesting results, as discussed in this commentary

    The Difference δ-Cells Make in Glucose Control.

    No full text
    • …
    corecore