42 research outputs found

    Electrogenic Na/HCO3 Cotransporter (NBCe1) Variants Expressed in Xenopus Oocytes: Functional Comparison and Roles of the Amino and Carboxy Termini

    Get PDF
    Using pH- and voltage-sensitive microelectrodes, as well as the two-electrode voltage-clamp and macropatch techniques, we compared the functional properties of the three NBCe1 variants (NBCe1-A, -B, and -C) with different amino and/or carboxy termini expressed in Xenopus laevis oocytes. Oocytes expressing rat brain NBCe1-B and exposed to a CO2/HCO3− solution displayed all the hallmarks of an electrogenic Na+/HCO3− cotransporter: (a) a DIDS-sensitive pHi recovery following the initial CO2-induced acidification, (b) an instantaneous hyperpolarization, and (c) an instantaneous Na+-dependent outward current under voltage-clamp conditions (−60 mV). All three variants had similar external HCO3− dependencies (apparent KM of 4–6 mM) and external Na+ dependencies (apparent KM of 21–36 mM), as well as similar voltage dependencies. However, voltage-clamped oocytes (−60 mV) expressing NBCe1-A exhibited peak HCO3−-stimulated NBC currents that were 4.3-fold larger than the currents seen in oocytes expressing the most dissimilar C variant. Larger NBCe1-A currents were also observed in current–voltage relationships. Plasma membrane expression levels as assessed by single oocyte chemiluminescence with hemagglutinin-tagged NBCs were similar for the three variants. In whole-cell experiments (Vm = −60 mV), removing the unique amino terminus of NBCe1-A reduced the mean HCO3−-induced NBC current 55%, whereas removing the different amino terminus of NBCe1-C increased the mean NBC current 2.7-fold. A similar pattern was observed in macropatch experiments. Thus, the unique amino terminus of NBCe1-A stimulates transporter activity, whereas the different amino terminus of the B and C variants inhibits activity. One or more cytosolic factors may also contribute to NBCe1 activity based on discrepancies between macropatch and whole-cell currents. While the amino termini influence transporter function, the carboxy termini influence plasma membrane expression. Removing the entire cytosolic carboxy terminus of NBCe1-C, or the different carboxy terminus of the A/B variants, causes a loss of NBC activity due to low expression at the plasma membrane

    Search for New Particles Decaying to b bbar in p pbar Collisions at sqrt{s}=1.8 TeV

    Full text link
    We have used 87 pb^-1 of data collected with the Collider Detector at Fermilab to search for new particles decaying to b bbar. We present model-independent upper limits on the cross section for narrow resonances which excludes the color-octet technirho in the mass interval 350 < M < 440 GeV/c^2. In addition, we exclude topgluons, predicted in models of topcolor-assisted technicolor, of width Gamma = 0.3 M in the mass range 280 < M < 670 GeV/c^2, of width Gamma = 0.5 M in the mass range 340 < M < 640 GeV/c^2, and of width Gamma = 0.7 M in the mass range 375 < M < 560 GeV/c^2.Comment: 17 pages in a LaTex generated postscript file, with one table and four figures. Resubmitted to Physical Review Letters. Minor clarifications were added to the text. The displayed normalization of the resonance models in Figure 2 was modified to correspond to our 95% CL upper limit on the cross section (instead of arbitrary normalization which was used previously). All results are identical to those in the previous submissio

    Altered pH i

    No full text

    Sinupret activates CFTR and TMEM16A-dependent transepithelial chloride transport and improves indicators of mucociliary clearance.

    No full text
    We have previously demonstrated that Sinupret, an established treatment prescribed widely in Europe for respiratory ailments including rhinosinusitis, promotes transepithelial chloride (Cl-) secretion in vitro and in vivo. The present study was designed to evaluate other indicators of mucociliary clearance (MCC) including ciliary beat frequency (CBF) and airway surface liquid (ASL) depth, but also investigate the mechanisms that underlie activity of this bioflavonoid.Primary murine nasal septal epithelial (MNSE) [wild type (WT) and transgenic CFTR(-/-)], human sinonasal epithelial (HSNE), WT CFTR-expressing CFBE and TMEM16A-expressing HEK cultures were utilized for the present experiments. CBF and ASL depth measurements were performed. Mechanisms underlying transepithelial Cl- transport were determined using pharmacologic manipulation in Ussing chambers, Fura-2 intracellular calcium [Ca(2+)]i imaging, cAMP signaling, regulatory domain (R-D) phosphorylation of CFTR, and excised inside out and whole cell patch clamp analysis.Sinupret-mediated Cl- secretion [ΔISC(µA/cm(2))] was pronounced in WT MNSE (20.7+/-0.9 vs. 5.6+/-0.9(control), p<0.05), CFTR(-/-) MNSE (10.1+/-1.0 vs. 0.9+/-0.3(control), p<0.05) and HSNE (20.7+/-0.3 vs. 6.4+/-0.9(control), p<0.05). The formulation activated Ca(2+) signaling and TMEM16A channels, but also increased CFTR channel open probability (Po) without stimulating PKA-dependent pathways responsible for phosphorylation of the CFTR R-domain and resultant Cl- secretion. Sinupret also enhanced CBF and ASL depth.Sinupret stimulates CBF, promotes transepithelial Cl- secretion, and increases ASL depth in a manner likely to enhance MCC. Our findings suggest that direct stimulation of CFTR, together with activation of Ca(2+)-dependent TMEM16A secretion account for the majority of anion transport attributable to Sinupret. These studies provide further rationale for using robust Cl- secretagogue based therapies as an emerging treatment modality for common respiratory diseases of MCC including acute and chronic bronchitis and CRS

    ATP-independent CFTR channel gating and allosteric modulation by phosphorylation

    No full text
    Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) channel, an ATP binding cassette (ABC) transporter. CFTR gating is linked to ATP binding and dimerization of its two nucleotide binding domains (NBDs). Channel activation also requires phosphorylation of the R domain by poorly understood mechanisms. Unlike conventional ligand-gated channels, CFTR is an ATPase for which ligand (ATP) release typically involves nucleotide hydrolysis. The extent to which CFTR gating conforms to classic allosteric schemes of ligand activation is unclear. Here, we describe point mutations in the CFTR cytosolic loops that markedly increase ATP-independent (constitutive) channel activity. This finding is consistent with an allosteric gating mechanism in which ligand shifts the equilibrium between inactive and active states but is not essential for channel opening. Constitutive mutations mapped to the putative symmetry axis of CFTR based on the crystal structures of related ABC transporters, a common theme for activating mutations in ligand-gated channels. Furthermore, the ATP sensitivity of channel activation was strongly enhanced by these constitutive mutations, as predicted for an allosteric mechanism (reciprocity between protein activation and ligand occupancy). Introducing constitutive mutations into CFTR channels that cannot open in response to ATP (i.e., the G551D CF mutant and an NBD2-deletion mutant) substantially rescued their activities. Importantly, constitutive mutants that opened without ATP or NBD2 still required R domain phosphorylation for optimal activity. Our results confirm that (i) CFTR gating exhibits features of protein allostery that are shared with conventional ligand-gated channels and (ii) the R domain modulates CFTR activity independent of ATP-induced NBD dimerization
    corecore