30 research outputs found
Access to
Dehydroquinate synthase (DHQS) catalyses the second step of the shikimate pathway to aromatic compounds. DHQS from the archaeal hyperthermophile Pyrococcus furiosus was insoluble when expressed in Escherichia coli but was partially solubilised when KCl was included in the cell lysis buffer. A purification procedure was developed, involving lysis by sonication at 30 • C followed by a heat treatment at 70 • C and anion exchange chromatography. Purified recombinant P. furiosus DHQS is a dimer with a subunit Mr of 37,397 (determined by electrospray ionisation mass spectrometry) and is active over broad pH and temperature ranges. The kinetic parameters are K M (3-deoxy-D-arabino-heptulosonate 7-phosphate) 3.7 μM and k cat 3.0 sec −1 at 60 • C and pH 6.8. EDTA inactivates the enzyme, and enzyme activity is restored by several divalent metal ions including (in order of decreasing effectiveness) Cd 2+ , Co 2+ , Zn 2+ , and Mn 2+ . High activity of a DHQS in the presence of Cd 2+ has not been reported for enzymes from other sources, and may be related to the bioavailability of Cd 2+ for P. furiosus. This study is the first biochemical characterisation of a DHQS from a thermophilic source. Furthermore, the characterisation of this hyperthermophilic enzyme was carried out at elevated temperatures using an enzyme-coupled assay
Impact of Genetic Background on Allele Selection in a Highly Mutable Candida albicans Gene, PNG2
In many microbes rapid mutation of highly mutable contingency genes continually replenishes a pool of variant alleles from which the most suitable are selected, assisting in rapid adaptation and evasion of the immune response. In some contingency genes mutability is achieved through DNA repeats within the coding region. The fungal human pathogen Candida albicans has 2600 repeat-containing ORFs. For those investigated (ALS genes, HYR1, HYR2, CEK1, RLM1) many protein variants with differing amino acid repeat regions exist, as expected for contingency genes. However, specific alleles dominate in different clades, which is unexpected if allele variation is used for short-term adaptation. Generation of new alleles of repeat-containing C. albicans ORFs has never been observed directly. Here we present evidence for restrictions on the emergence of new alleles in a highly mutable C. albicans repeat-containing ORF, PNG2, encoding a putative secreted or cell surface glycoamidase. In laboratory cultures new PNG2 alleles arose at a rate of 2.8×10−5 (confidence interval 3.3×10−6−9. 9×10−5) per cell per division, comparable to rates measured for contingency genes. Among 80 clinical isolates 17 alleles of different length and 23 allele combinations were distinguishable; sequence differences between repeat regions of identical size suggest the existence of 36 protein variants. Specific allele combinations predominated in different genetic backgrounds, as defined by DNA fingerprinting and multilocus sequence typing. Given the PNG2 mutation rate, this is unexpected, unless in different genetic backgrounds selection favors different alleles. Specific alleles or allele combinations were not preferentially associated with C. albicans isolates from particular body sites or geographical regions. Our results suggest that the mutability of PNG2 is not used for short-term adaptation or evasion of the immune system. Nevertheless the large number of alleles observed indicates that mutability of PNG2 may assist C. albicans strains from different genetic backgrounds optimize their interaction with the host in the long term
Sharpea and Kandleria are lactic acid producing rumen bacteria that do not change their fermentation products when co-cultured with a methanogen
peer-reviewedSharpea and Kandleria are associated with rumen samples from low-methane-emitting sheep. Four strains of each genus were studied in culture, and the genomes of nine strains were analysed, to understand the physiology of these bacteria. All eight cultures grew equally well with d-glucose, d-fructose, d-galactose, cellobiose, and sucrose supplementation. d-Lactate was the major end product, with small amounts of the mixed acid fermentation products formate, acetate and ethanol. Genes encoding the enzymes necessary for this fermentation pattern were found in the genomes of four strains of Sharpea and five of Kandleria. Strains of Sharpea produced traces of hydrogen gas in pure culture, but strains of Kandleria did not. This was consistent with finding that Sharpea, but not Kandleria, genomes contained genes coding for hydrogenases. It was speculated that, in co-culture with a methanogen, Sharpea and Kandleria might change their fermentation pattern from a predominately homolactic to a predominately mixed acid fermentation, which would result in a decrease in lactate production and an increase in formation of acetate and perhaps ethanol. However, Sharpea and Kandleria did not change their fermentation products when co-cultured with Methanobrevibacter olleyae, a methanogen that can use both hydrogen and formate, and lactate remained the major end product. The results of this study therefore support a hypothesis that explains the link between lower methane yields and larger populations of Sharpea and Kandleria in the rumens of sheep
Behavioral responses of terrestrial mammals to COVID-19 lockdowns
DATA AND MATERIALS AVAILABILITY : The full dataset used in the final analyses (33) and associated code (34) are available at Dryad. A subset of the spatial coordinate datasets is available at Zenodo (35). Certain datasets of spatial coordinates will be available only through requests made to the authors due to conservation and Indigenous sovereignty concerns (see table S1 for more information on data use restrictions and contact information for data requests). These sensitive data will be made available upon request to qualified researchers for research purposes, provided that the data use will not threaten the study populations, such as by distribution or publication of the coordinates or detailed maps. Some datasets, such as those overseen by government agencies, have additional legal restrictions on data sharing, and researchers may need to formally apply for data access. Collaborations with data holders are generally encouraged, and in cases where data are held by Indigenous groups or institutions from regions that are under-represented in the global science community, collaboration may be required to ensure inclusion.COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals’ 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.The Radboud Excellence Initiative, the German Federal Ministry of Education and Research, the National Science Foundation, Serbian Ministry of Education, Science and Technological Development, Dutch Research Council NWO program “Advanced Instrumentation for Wildlife Protection”, Fondation Segré, RZSS, IPE, Greensboro Science Center, Houston Zoo, Jacksonville Zoo and Gardens, Nashville Zoo, Naples Zoo, Reid Park Zoo, Miller Park, WWF, ZCOG, Zoo Miami, Zoo Miami Foundation, Beauval Nature, Greenville Zoo, Riverbanks zoo and garden, SAC Zoo, La Passarelle Conservation, Parc Animalier d’Auvergne, Disney Conservation Fund, Fresno Chaffee zoo, Play for nature, North Florida Wildlife Center, Abilene Zoo, a Liber Ero Fellowship, the Fish and Wildlife Compensation Program, Habitat Conservation Trust Foundation, Teck Coal, and the Grand Teton Association. The collection of Norwegian moose data was funded by the Norwegian Environment Agency, the German Ministry of Education and Research via the SPACES II project ORYCS, the Wyoming Game and Fish Department, Wyoming Game and Fish Commission, Bureau of Land Management, Muley Fanatic Foundation (including Southwest, Kemmerer, Upper Green, and Blue Ridge Chapters), Boone and Crockett Club, Wyoming Wildlife and Natural Resources Trust, Knobloch Family Foundation, Wyoming Animal Damage Management Board, Wyoming Governor’s Big Game License Coalition, Bowhunters of Wyoming, Wyoming Outfitters and Guides Association, Pope and Young Club, US Forest Service, US Fish and Wildlife Service, the Rocky Mountain Elk Foundation, Wyoming Wild Sheep Foundation, Wild Sheep Foundation, Wyoming Wildlife/Livestock Disease Research Partnership, the US National Science Foundation [IOS-1656642 and IOS-1656527, the Spanish Ministry of Economy, Industry and Competitiveness, and by a GRUPIN research grant from the Regional Government of Asturias, Sigrid Rausing Trust, Batubay Özkan, Barbara Watkins, NSERC Discovery Grant, the Federal Aid in Wildlife Restoration act under Pittman-Robertson project, the State University of New York, College of Environmental Science and Forestry, the Ministry of Education, Youth and Sport of the Czech Republic, the Ministry of Agriculture of the Czech Republic, Rufford Foundation, an American Society of Mammalogists African Graduate Student Research Fund, the German Science Foundation, the Israeli Science Foundation, the BSF-NSF, the Ministry of Agriculture, Forestry and Food and Slovenian Research Agency (CRP V1-1626), the Aage V. Jensen Naturfond (project: Kronvildt - viden, værdier og værktøjer), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy, National Centre for Research and Development in Poland, the Slovenian Research Agency, the David Shepherd Wildlife Foundation, Disney Conservation Fund, Whitley Fund for Nature, Acton Family Giving, Zoo Basel, Columbus, Bioparc de Doué-la-Fontaine, Zoo Dresden, Zoo Idaho, Kolmården Zoo, Korkeasaari Zoo, La Passarelle, Zoo New England, Tierpark Berlin, Tulsa Zoo, the Ministry of Environment and Tourism, Government of Mongolia, the Mongolian Academy of Sciences, the Federal Aid in Wildlife Restoration act and the Illinois Department of Natural Resources, the National Science Foundation, Parks Canada, Natural Sciences and Engineering Research Council, Alberta Environment and Parks, Rocky Mountain Elk Foundation, Safari Club International and Alberta Conservation Association, the Consejo Nacional de Ciencias y Tecnología (CONACYT) of Paraguay, the Norwegian Environment Agency and the Swedish Environmental Protection Agency, EU funded Interreg SI-HR 410 Carnivora Dinarica project, Paklenica and Plitvice Lakes National Parks, UK Wolf Conservation Trust, EURONATUR and Bernd Thies Foundation, the Messerli Foundation in Switzerland and WWF Germany, the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Actions, NASA Ecological Forecasting Program, the Ecotone Telemetry company, the French National Research Agency, LANDTHIRST, grant REPOS awarded by the i-Site MUSE thanks to the “Investissements d’avenir” program, the ANR Mov-It project, the USDA Hatch Act Formula Funding, the Fondation Segre and North American and European Zoos listed at http://www.giantanteater.org/, the Utah Division of Wildlife Resources, the Yellowstone Forever and the National Park Service, Missouri Department of Conservation, Federal Aid in Wildlife Restoration Grant, and State University of New York, various donors to the Botswana Predator Conservation Program, data from collared caribou in the Northwest Territories were made available through funds from the Department of Environment and Natural Resources, Government of the Northwest Territories. The European Research Council Horizon2020, the British Ecological Society, the Paul Jones Family Trust, and the Lord Kelvin Adam Smith fund, the Tanzania Wildlife Research Institute and Tanzania National Parks. The Eastern Shoshone and Northern Arapahoe Fish and Game Department and the Wyoming State Veterinary Laboratory, the Alaska Department of Fish and Game, Kodiak Brown Bear Trust, Rocky Mountain Elk Foundation, Koniag Native Corporation, Old Harbor Native Corporation, Afognak Native Corporation, Ouzinkie Native Corporation, Natives of Kodiak Native Corporation and the State University of New York, College of Environmental Science and Forestry, and the Slovenia Hunters Association and Slovenia Forest Service. F.C. was partly supported by the Resident Visiting Researcher Fellowship, IMéRA/Aix-Marseille Université, Marseille. This work was partially funded by the Center of Advanced Systems Understanding (CASUS), which is financed by Germany’s Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science, Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon State Parliament. This article is a contribution of the COVID-19 Bio-Logging Initiative, which is funded in part by the Gordon and Betty Moore Foundation (GBMF9881) and the National Geographic Society.https://www.science.org/journal/sciencehj2023Mammal Research InstituteZoology and Entomolog
The cloning, expression and crystallisation of a thermostable arginase
AbstractThe gene for the thermostable arginase from the thermophilic bacterium ‘Bacillus caldovelox’ has been cloned and sequenced. Expression of recombinant arginase at high levels has been achieved in E. coli using an inducible T7 RNA polymerase-based system. A facile purification procedure incorporating a heat-treatment step yielded 0.2 g of recombinant arginase per litre of induced culture. The kinetic properties of the purified recombinant protein are essentially identical to the native enzyme. The recombinant protein has been crystallised and one crystal form is isomorphous to crystals of the native protein
Structural Characterization of the S-glycosylated Bacteriocin ASM1 from Lactobacillus plantarum
In order to protect their environmental niche, most bacteria secret antimicrobial substances designed to target specific bacterial strains that are often closely related to the producer strain. Bacteriocins, small, ribosomally synthesised antimicrobial peptides, comprise a class of such substances and can either inhibit (bacteriostatic) or kill (bactericidal) target cells. Glycocins are a class of bacteriocin that are post-translationally modified by one or more carbohydrate moieties that are either β-O-linked to either a serine or threonine and/or β-S-linked to a cysteine. The solution nuclear magnetic resonance structure (NMR) of the glycocin ASM1 (produced by Lactobacillus plantarum A-1), an orthologue of GccF, has been determined. In both structures, the disulfide bonds are essential for activity and restrict the mobility of the N-acetyl-glucosamine (GlcNAc) attached to Ser-18 (O-linked), compared to the much more flexible GlcNAc moiety on Cys-43 (S-linked). Interestingly, despite 88% sequence identity, the helical structure of ASM1 is less pronounced which appears to be consistent with the far ultra-violet circular dichroism (UV CD) spectra
The Purification of Cellulase and Hemicellulase Components from an Extreme Thermophile by the Cloning of Enzymes into E. coli
The use of heat treatment to purify enzymes by selective denaturation and then by the subsequent precipitation of denatured protein is a simple, rapid, and well established procedure. Successful applications are limited to those few enzymes that possess a thermostability considerably higher than the majority of cell proteins. The introduction of thermostable enzymes into the protein population of a mesophile by cloning offers a clear opportunity to employ a heat-treatment method of purification to its full advantage (e.g., see references 1 and 2).
In light of the difficulties involved in purifying bacterial cellulases, the cloning of some of the cellulase and hemicellulase genes of Caldocellum saccharolyticum into Escherichia coli has provided a welcome alternative procedure for obtaining pure enzymes
Verification of <i>PNG2</i> expression by Northern hybridization.
<p>Messenger RNA (5 µg per lane) prepared from exponential phase cultures of SC5314 and HUN68 grown in YPD was hybridized under high-stringency conditions with a probe corresponding to the repeat region.</p